Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 29(1): 410-428, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30357410

RESUMO

It is commonly assumed that the human auditory cortex is organized similarly to that of macaque monkeys, where the primary region, or "core," is elongated parallel to the tonotopic axis (main direction of tonotopic gradients), and subdivided across this axis into up to 3 distinct areas (A1, R, and RT), with separate, mirror-symmetric tonotopic gradients. This assumption, however, has not been tested until now. Here, we used high-resolution ultra-high-field (7 T) magnetic resonance imaging (MRI) to delineate the human core and map tonotopy in 24 individual hemispheres. In each hemisphere, we assessed tonotopic gradients using principled, quantitative analysis methods, and delineated the core using 2 independent (functional and structural) MRI criteria. Our results indicate that, contrary to macaques, the human core is elongated perpendicular rather than parallel to the main tonotopic axis, and that this axis contains no more than 2 mirror-reversed gradients within the core region. Previously suggested homologies between these gradients and areas A1 and R in macaques were not supported. Our findings suggest fundamental differences in auditory cortex organization between humans and macaques.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Animais , Feminino , Haplorrinos , Humanos , Macaca , Masculino , Especificidade da Espécie
2.
J Neurosci ; 31(9): 3176-85, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21368029

RESUMO

Previous studies raise the hypothesis that attentional bias in the phase of neocortical excitability fluctuations (oscillations) represents a fundamental mechanism for tuning the brain to the temporal dynamics of task-relevant event patterns. To evaluate this hypothesis, we recorded intracranial electrocortical activity in human epilepsy patients while they performed an audiovisual stream selection task. Consistent with our hypothesis, (1) attentional modulation of oscillatory entrainment operates in a distinct network of areas including auditory, visual, posterior parietal, inferior motor, inferior frontal and superior midline frontal cortex, (2) the degree of oscillatory entrainment depends on the predictability of the stimulus stream, and (3) the attentional phase shift of entrained oscillation cooccurs with classical attentional effects observed on phase-locked evoked activity in sensory-specific areas but seems to operate on entrained low-frequency oscillations that cannot be explained by sensory activity evoked at the rate of stimulation. Thus, attentional entrainment appears to tune a network of brain areas to the temporal dynamics of behaviorally relevant event streams, contributing to its perceptual and behavioral selection.


Assuntos
Estimulação Acústica/métodos , Atenção/fisiologia , Neocórtex/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Fatores de Tempo
3.
BMC Neurosci ; 10: 23, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19309511

RESUMO

BACKGROUND: In normal-hearing subjects, monaural stimulation produces a normal pattern of asynchrony and asymmetry over the auditory cortices in favour of the contralateral temporal lobe. While late onset unilateral deafness has been reported to change this pattern, the exact influence of the side of deafness on central auditory plasticity still remains unclear. The present study aimed at assessing whether left-sided and right-sided deafness had differential effects on the characteristics of neurophysiological responses over auditory areas. Eighteen unilaterally deaf and 16 normal hearing right-handed subjects participated. All unilaterally deaf subjects had post-lingual deafness. Long latency auditory evoked potentials (late-AEPs) were elicited by two types of stimuli, non-speech (1 kHz tone-burst) and speech-sounds (voiceless syllable/pa/) delivered to the intact ear at 50 dB SL. The latencies and amplitudes of the early exogenous components (N100 and P150) were measured using temporal scalp electrodes. RESULTS: Subjects with left-sided deafness showed major neurophysiological changes, in the form of a more symmetrical activation pattern over auditory areas in response to non-speech sound and even a significant reversal of the activation pattern in favour of the cortex ipsilateral to the stimulation in response to speech sound. This was observed not only for AEP amplitudes but also for AEP time course. In contrast, no significant changes were reported for late-AEP responses in subjects with right-sided deafness. CONCLUSION: The results show that cortical reorganization induced by unilateral deafness mainly occurs in subjects with left-sided deafness. This suggests that anatomical and functional plastic changes are more likely to occur in the right than in the left auditory cortex. The possible perceptual correlates of such neurophysiological changes are discussed.


Assuntos
Córtex Auditivo/fisiopatologia , Percepção Auditiva , Surdez/fisiopatologia , Potenciais Evocados Auditivos , Lateralidade Funcional , Perda Auditiva Unilateral/fisiopatologia , Percepção da Fala , Estimulação Acústica/métodos , Adulto , Limiar Auditivo , Eletroencefalografia , Feminino , França , Humanos , Idioma , Masculino , Pessoa de Meia-Idade
4.
J Neurosci ; 28(52): 14301-10, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19109511

RESUMO

Hemodynamic studies have shown that the auditory cortex can be activated by visual lip movements and is a site of interactions between auditory and visual speech processing. However, they provide no information about the chronology and mechanisms of these cross-modal processes. We recorded intracranial event-related potentials to auditory, visual, and bimodal speech syllables from depth electrodes implanted in the temporal lobe of 10 epileptic patients (altogether 932 contacts). We found that lip movements activate secondary auditory areas, very shortly (approximately equal to 10 ms) after the activation of the visual motion area MT/V5. After this putatively feedforward visual activation of the auditory cortex, audiovisual interactions took place in the secondary auditory cortex, from 30 ms after sound onset and before any activity in the polymodal areas. Audiovisual interactions in the auditory cortex, as estimated in a linear model, consisted both of a total suppression of the visual response to lipreading and a decrease of the auditory responses to the speech sound in the bimodal condition compared with unimodal conditions. These findings demonstrate that audiovisual speech integration does not respect the classical hierarchy from sensory-specific to associative cortical areas, but rather engages multiple cross-modal mechanisms at the first stages of nonprimary auditory cortex activation.


Assuntos
Córtex Auditivo/fisiopatologia , Mapeamento Encefálico , Epilepsias Parciais/patologia , Epilepsias Parciais/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica/métodos , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Fatores de Tempo , Adulto Jovem
5.
J Neurosci ; 27(35): 9252-61, 2007 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-17728439

RESUMO

In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiopatologia , Mapeamento Encefálico , Potenciais Evocados Auditivos/fisiologia , Som , Estimulação Acústica/métodos , Adulto , Relação Dose-Resposta à Radiação , Eletroencefalografia/métodos , Epilepsia/patologia , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Fatores de Tempo
6.
J Neurosci ; 27(29): 7838-46, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17634377

RESUMO

Deprivation from normal sensory input has been shown to alter tonotopic organization of the human auditory cortex. In this context, cochlear implant subjects provide an interesting model in that profound deafness is made partially reversible by the cochlear implant. In restoring afferent activity, cochlear implantation may also reverse some of the central changes related to deafness. The purpose of the present study was to address whether the auditory cortex of cochlear implant subjects is tonotopically organized. The subjects were thirteen adults with at least 3 months of cochlear implant experience. Auditory event-related potentials were recorded in response to electrical stimulation delivered at different intracochlear electrodes. Topographic analysis of the auditory N1 component (approximately 85 ms latency) showed that the locations on the scalp and the relative amplitudes of the positive/negative extrema differ according to the stimulated electrode, suggesting that distinct sets of neural sources are activated. Dipole modeling confirmed electrode-dependent orientations of these sources in temporal areas, which can be explained by nearby, but distinct sites of activation in the auditory cortex. Although the cortical organization in cochlear implant users is similar to the tonotopy found in normal-hearing subjects, some differences exist. Nevertheless, a correlation was found between the N1 peak amplitude indexing cortical tonotopy and the values given by the subjects for a pitch scaling task. Hence, the pattern of N1 variation likely reflects how frequencies are coded in the brain.


Assuntos
Córtex Auditivo/fisiopatologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Implante Coclear , Surdez/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Idoso , Análise de Variância , Córtex Auditivo/efeitos da radiação , Surdez/patologia , Surdez/cirurgia , Estimulação Elétrica/métodos , Eletrodos , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/efeitos da radiação , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia
7.
Exp Brain Res ; 166(3-4): 337-44, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16041497

RESUMO

The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for any audiovisual event or whether this phenomenon is limited to specific domains in which strong audiovisual illusions occur. To highlight this issue, we have compared the topographies of MMNs elicited by non-speech audiovisual stimuli deviating from audiovisual standards on the visual, the auditory, or both dimensions. Contrary to what occurs with audiovisual illusions, each unimodal deviant elicited sensory-specific MMNs, and the MMN to audiovisual deviants included both sensory components. The visual MMN was, however, different from a genuine visual MMN obtained in a visual-only control oddball paradigm, suggesting that auditory and visual information interacts before the MMN process occurs. Furthermore, the MMN to audiovisual deviants was significantly different from the sum of the two sensory-specific MMNs, showing that the processes of visual and auditory change detection are not completely independent.


Assuntos
Percepção Auditiva/fisiologia , Memória/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Atenção/fisiologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA