Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 30(10): 863-874, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27629350

RESUMO

In this work, we present a case study to explore the challenges associated with finding novel molecules for a receptor that has been studied in depth and has a wealth of chemical information available. Specifically, we apply a previously described protocol that incorporates explicit water molecules in the ligand binding site to prospectively screen over 2.5 million drug-like and lead-like compounds from the commercially available eMolecules database in search of novel binders to the adenosine A2A receptor (A2AAR). A total of seventy-one compounds were selected for purchase and biochemical assaying based on high ligand efficiency and high novelty (Tanimoto coefficient ≤0.25 to any A2AAR tested compound). These molecules were then tested for their affinity to the adenosine A2A receptor in a radioligand binding assay. We identified two hits that fulfilled the criterion of ~50 % radioligand displacement at a concentration of 10 µM. Next we selected an additional eight novel molecules that were predicted to make a bidentate interaction with Asn2536.55, a key interacting residue in the binding pocket of the A2AAR. None of these eight molecules were found to be active. Based on these results we discuss the advantages of structure-based methods and the challenges associated with finding chemically novel molecules for well-explored targets.


Assuntos
Receptor A2A de Adenosina/química , Agonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/química , Sítios de Ligação , Simulação por Computador , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Ensaio Radioligante , Relação Estrutura-Atividade , Água
2.
Methods Mol Biol ; 1335: 251-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26260606

RESUMO

Progress in structure determination of G protein-coupled receptors (GPCRs) has made it possible to apply structure-based drug design (SBDD) methods to this pharmaceutically important target class. The quality of GPCR structures available for SBDD projects fall on a spectrum ranging from high resolution crystal structures (<2 Å), where all water molecules in the binding pocket are resolved, to lower resolution (>3 Å) where some protein residues are not resolved, and finally to homology models that are built using distantly related templates. Each GPCR project involves a distinct set of opportunities and challenges, and requires different approaches to model the interaction between the receptor and the ligands. In this review we will discuss docking and virtual screening to GPCRs, and highlight several refinement and post-processing steps that can be used to improve the accuracy of these calculations. Several examples are discussed that illustrate specific steps that can be taken to improve upon the docking and virtual screening accuracy. While GPCRs are a unique target class, many of the methods and strategies outlined in this review are general and therefore applicable to other protein families.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Simulação de Acoplamento Molecular/métodos , Receptores Acoplados a Proteínas G/metabolismo , Interface Usuário-Computador , Agonismo Inverso de Drogas , Humanos , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA