Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Health Care Sci ; 10(1): 7, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268049

RESUMO

BACKGROUND: Multidrug-resistant bacterial strains cause several serious infections that can be fatal, such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae (often referred to as ESKAPE pathogens). Since ancient times, several indigenous medical systems in India have utilized diverse medicinal plants (approximately 80,000 species) as conventional treatments for a variety of illnesses. A member of the Fabaceae family, also referred to as "Himalayan indigo," Indigofera heterantha Wall, is well known for its therapeutic properties. METHODS: The present study investigated the antibacterial, antifungal and antihelmintic properties of the roots, bark, leaves, and flowers of I. heterantha from the Kashmir Himalayas. The effectiveness of the extracts against bacteria, fungi, and earthworms. Three of the tested organisms for bacteria were ESKAPE pathogens, as they are responsible for creating fatal bacterial infections. The antifungal potency of I. heterantha aqueous and methanolic extracts was evaluated using the Agar Well Diffusion Assay. The antihelmintic activity was carried out on an adult Pheretima posthuma Indian earth worm, which shares physiological and anatomical similarities with human intestinal roundworm parasites. RESULTS: The methanolic extracts of root and bark have shown prominent activity against all bacterial strains, whereas aqueous extracts of flower, root, and leaves have shown promising activity against Staphylococcus aureus. The aqueous extract demonstrated good activity against S. cerevisiae at a concentration of 200 mg/ml with a zone of inhibition of 16 mm, while the methanolic extract displayed comparable activity against the fungal strains. The remaining two strains, P. crysogenum and A. fumigatus, were only moderately active in response to the extracts. All the extracts have shown anthelmintic activity except aqueous flower. CONCLUSION: These results will pave the way for the bioassay-guided isolation of bioactive constituents that may act as hits for further development as potential antibacterial agents against drug-resistant microbial and helminthic infections.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2389-2399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34554266

RESUMO

Senecio graciliflorus DC root extract was studied for secondary metabolite composition following the bioactivity-guided isolation technique. The ethyl acetate extract of Senecio graciliflorus root yielded nine chemical constituents: 3,4-di-tert-butyl toluene, stigmasterol, ß-sitosterol, 2ß-(angeloyloxy)furanoeremophilane, gallic acid, 2ß-{[(Z)-2-hydroxymethylbut-2-enoyl]oxy}furanoeremophilane, 1-hydroxypentan-2-yl-4-methylbenzoate, sarcinic acid, and sitosterol 3-O-ß-D-glucopyranoside. The structures of the chemical constituents were elucidated on the basis of spectral data analysis in the light of literature. All the compounds are being reported for the first time from this plant. The isolated constituents were screened for neuroprotective effects against corticosterone-induced impairment in neuroblastoma cell lines (SH-SY5S cells). The viability of SH-SY5S cells was determined using MTT assay. Among various isolated compounds, three natural products (sarcinic acid, gallic acid, and ß-sitosterol) displayed robust neurotropic activity. The compounds increased neuronal cell survival in differentiated neuroblastoma cells (SH-SY5Y) from high-dose corticosterone (400 µM)-induced cell death. All the three constituents showed maximum AKT/ERK pathway activation at 20 µM concentration. The studies are aimed to explore small molecules for treating neurodegeneration underlying various neurological disorders to restore neuronal cell plasticity.


Assuntos
Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Senécio/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corticosterona , Humanos , Neuroblastoma/patologia , Fármacos Neuroprotetores/isolamento & purificação , Raízes de Plantas , Metabolismo Secundário , Senécio/metabolismo
3.
ScientificWorldJournal ; 2015: 816364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106644

RESUMO

Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.


Assuntos
Guaiacol/análogos & derivados , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antidiarreicos/química , Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Antieméticos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Zingiber officinale/química , Guaiacol/química , Guaiacol/farmacologia , Guaiacol/uso terapêutico , Humanos , Lipólise/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA