RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In folk medicine, parts of Plumeria alba L. are used for the treatment of many diseases, with its latex being used for curing skin diseases and promoting wound healing. AIM OF THE STUDY: This study aimed to study the role of P. alba L. latex in hemostasis and platelet aggregation. MATERIALS AND METHODS: The latex of P. alba L. was processed to remove waxes and enrich protein content, and the final extract was named Plumeria alba L. natant latex (PaNL). PaNL was analyzed for protease activity against casein. The type of protease in PaNL was identified by using protease inhibitors such as E-64, phenylmethylsulfonyl fluoride, ethylenediaminetetraacetic acid, and pepstatin A. Human fibrinogen, fibrin, and collagen types I and IV were subjected to hydrolysis with different concentrations of PaNL. The thrombin-like activity of PaNL was determined by analyzing its fibrinogen-clotting and procoagulant activities. The role of PaNL in platelet aggregation was also investigated. Its hemorrhagic and edema-inducing activities were evaluated in a mouse model. Phytochemical compounds were identified by gas chromatography-mass spectroscopy. RESULTS: The findings of casein/gelatin zymography confirmed that PaNL possesses protease activity. The results of the protease inhibition study indicated the presence of a cysteine-type protease(s) in PaNL. PaNL hydrolyzed the subunits of fibrinogen, fibrin, and collagen types I and IV. Its fibrin-degradation activity indicated that PaNL possesses plasmin-like activity. PaNL induced clotting of citrated human plasma within 3 min of incubation in the absence of CaCl2, indicating the presence of thrombin-like activity, which was further confirmed by the results of the fibrinogen-clotting assay. PaNL induced platelet aggregation in the absence of agonists. There was no hemolytic activity. Mice injected with PaNL did not show edema/ hemorrhagic activity. CONCLUSION: PaNL possesses procoagulant, fibrino(geno)lytic, thrombin- and plasmin-like activities and induces platelet aggregation, which could explain its usage for wound treatment in folk medicine.
Assuntos
Apocynaceae/química , Cisteína Proteases/metabolismo , Fibrinolisina , Látex/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Trombina , Animais , Coagulação Sanguínea/efeitos dos fármacos , Cisteína Proteases/genética , Edema/induzido quimicamente , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Hemorragia/induzido quimicamente , Látex/efeitos adversos , Látex/química , Masculino , Camundongos , Compostos Fitoquímicos , FitoterapiaRESUMO
Certain human diseases affecting the biliary tree can be modeled in rats by ingestion of the hepatobiliary toxin alpha-naphthylisothiocyanate (ANIT). Phosphorus magnetic resonance spectroscopy (MRS) allows the noninvasive monitoring of cell dynamics through detection of phosphodiesters (PDE) and phosphomonoesters (PME). Hepatic (31)P MRS techniques were therefore used to study the toxic effects of low-dose chronic ANIT ingestion, with a view toward providing biomarkers sensitive to hepatobiliary dysfunction and cholestatic liver injury. Rats were fed an ANIT supplemented diet at three doses (ANIT_0.05%, ANIT_0.04%, and ANIT_0.025%) for 2 weeks. Data from in vivo MRS were compared with results from pair-fed controls (PFCs). Blood and tissue samples were collected at 2 weeks for clinical chemistry, histology, and (1)H magic angle spinning MRS. Increases in PDE, relative to total phosphorus (tPh), were detected in both the ANIT_0.05% and ANIT_0.04% groups (0.07 ± 0.01 and 0.08 ± 0.01, respectively) relative to PFC groups (0.03 ± 0.01 and 0.05 ± 0.01, respectively). An increase in PME/tPh was observed in the ANIT_0.05% group only (0.17 ± 0.02) relative to PFC_0.05% (0.12 ± 0.01). Ex vivo (1)H MRS findings supported this, wherein measured phosphocholines (PCs) were increased in ANIT_0.05% and ANIT_0.04% groups. Increases in relative total choline (tCho) distinguished the ANIT_0.05% group from the ANIT_0.04% group. Markers of hepatotoxicity such as raised total bilirubin and alkaline phosphatase were found at all ANIT doses. Histological findings included a dose-related increase in both severity of biliary hyperplasia and focal hepatocellular necrosis. Here, we found that ANIT-induced moderate hepatobiliary dysfunction was associated with a relative increase in phosphodiesters in vivo and PCs ex vivo. Raised PME/tPh in vivo and tCho ex vivo were also present at high doses corresponding to a higher incidence of marked biliary hyperplasia and moderate hepatocellular necrosis.