Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 266: 115606, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866038

RESUMO

Oxidative stress (OS) constitutes a pivotal factor in the initiation and progression of lipopolysaccharide (LPS) challenges in broiler chickens. Increasing studies have demonstrated that Alleviation of oxidative stress seems to be a reasonable strategy to alleviate LPS-mediated afflictions in broilers. Nonetheless, the relationship between OS-related indicators and exposure to LPS remains a topic of debate. The aim of this investigation was to precisely and holistically evaluate the effect of LPS exposure on OS-associated markers. We conducted a systematic search of four electronic databases-PubMed, Web of Science, Scopus, and Cochrane for relevant studies, and a total of 31 studies were included. The overall results showed that the LPS treatment significantly increased the levels of oxygen radicals and their products, such as malondialdehydes (MDA), reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG), while significantly reduced the levels of antioxidants, such as total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH), in the chickens. Intriguingly, though the observed trends in alterations were not strictly correlated with LPS concentrations, the enzyme activity levels were indeed influenced by the concentration of LPS. This observation highlights the complex relationship between LPS exposure and the body's antioxidant response. Despite some limitations, all the included studies were deemed credible. Subgroup evaluations revealed that the jejunum and duodenum has demonstrated stronger antioxidant capability compared to other tissues. Overall, our study presents compelling evidence that exposure to LPS induces significant OS in chickens. And we also found that the extent of OS was related to LPS doses, target tissues, and dietary ingredients.


Assuntos
Antioxidantes , Galinhas , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Lipopolissacarídeos/toxicidade , Estresse Oxidativo , Glutationa/farmacologia , Espécies Reativas de Oxigênio , 8-Hidroxi-2'-Desoxiguanosina , Biomarcadores , Suplementos Nutricionais/análise
2.
Poult Sci ; 102(5): 102598, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913756

RESUMO

A previous study identified genes and metabolites associated with amino acid metabolism, glycerophospholipid metabolism, and inflammatory response in the liver of broilers with immune stress. The present research was designed to investigate the effect of immune stress on the cecal microbiome in broilers. In addition, the correlation between altered microbiota and liver gene expression, the correlation between altered microbiota and serum metabolites were compared using the Spearman correlation coefficients. Eighty broiler chicks were randomly assigned to 2 groups with 4 replicate pens per group and 10 birds per pen. The model broilers were intraperitoneally injected of 250 µg/kg LPS at 12, 14, 33, and 35 d of age to induce immunological stress. Cecal contents were taken after the experiment and kept at -80°C for 16S rDNA gene sequencing. Then the Pearson's correlation between gut microbiome and liver transcriptome, between gut microbiome and serum metabolites were calculated using R software. The results showed that immune stress significantly changed microbiota composition at different taxonomic levels. KEGG pathways analysis suggested that these gut microbiota were mainly involved in biosynthesis of ansamycins, glycan degradation, D-glutamine and D-glutamate metabolism, valine, leucine, and isoleucine biosynthesis and biosynthesis of vancomycin group antibiotics. Moreover, immune stress increased the activities of metabolism of cofactors and vitamins, as well as decreased the ability of energy metabolism and digestive system. Pearson's correlation analysis identified several bacteria were positively correlated with the gene expression while a few of bacteria were negatively correlated with the gene expression. The results identified potential microbiota involvement in growth depression mediated by immune stress and provided strategies such as supplement of probiotic for alleviating immune stress in broiler chickens.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Galinhas/fisiologia , Suplementos Nutricionais/análise , Ceco/microbiologia , Probióticos/análise , Ração Animal/análise , Dieta/veterinária
3.
Poult Sci ; 102(4): 102536, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764136

RESUMO

Previous study showed that ginsenoside Rg1 (Rg1) and ginsenoside Re (Re) alleviated growth inhibition of broiler chicks with immune stress. The aim of this study was to investigate the effect of Rg1 and Re on inflammatory responses, oxidative stress, and apoptosis in liver of broilers with immune stress induced by lipopolysaccharide (LPS). Forty broiler chicks were randomly divided into 4 groups, each group consisting of 10 chickens. The model group, Rg1 group, and Re group were received continuously interval injection of 250 µg/kg body weight LPS at the age of 12, 14, 33, and 35 days to induce immune stress. Control group was injected with an equivalent amount of sterile saline. Then broilers in Rg1 group and Re group were given 1mg/kg body weight Rg1 and Re intraperitoneally 2 h after the LPS challenge respectively. Blood samples were collected for the detection of hormone levels, inflammatory mediators, and antioxidant parameters. Hepatic tissues were taken for pathological observation. Total RNA was extracted from the liver for real-time quantitative polymerase chain reaction analysis. Our results showed that Rg1 or Re could alleviate histological changes of liver, reduce production of stress-related hormones, inhibit inflammatory responses, and enhance antioxidant capacity in broilers challenged by immune stress. In addition, Rg1 or Re treatment upregulated mRNA expression of antioxidant-related genes and downregulated mRNA expression of inflammation-related factors and apoptosis-related genes in the liver of immune-stressed broilers. The results suggest that the plant extracts containing Rg1 and Re can be used for ameliorating hepatic oxidative stress and inflammation and controlling immune stress in broiler chicks.


Assuntos
Antioxidantes , Lipopolissacarídeos , Animais , Antioxidantes/metabolismo , Lipopolissacarídeos/toxicidade , Galinhas/fisiologia , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/veterinária , RNA Mensageiro/metabolismo
4.
Res Vet Sci ; 130: 230-236, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32224352

RESUMO

Houhai acupoint (HA) is a site for acupuncture stimulation, located in the fossa between the anus and tail base in animals. To evaluate HA as a potential immunization site, the immune responses were compared when HA and the conventional site nape were vaccinated in rats. The results showed that injection of a porcine epidemic diarrhea virus (PEDV) vaccine in HA induced significantly higher IgG, IgG1, IgG2, splenocyte proliferation and mRNA expression of IL-2, IL-4 and IFN-γ than in the nape. To search for the underlying mechanisms, the draining lymph nodes for HA and the nape were investigated. When rats were injected in HA with Indian ink, 11 lymph nodes including caudal mesenteric lymph node and bilateral gluteal lymph nodes, posterior inguinal lymph nodes, lumbar lymph nodes, internal iliac lymph nodes and popliteal lymph nodes were visibly stained with the ink and injection of a model antigen ovalbumin (OVA) in HA resulted in detection of OVA by western blotting while in the same lymph nodes only a pair of lymph nodes (central brachial lymph nodes) were observed when Indian ink or OVA was injected in the nape. IL-2 mRNA expression was detected in all the lymph nodes when PEDV vaccine was injected. Therefore, the enhanced immune response elicited by vaccination in HA may be attributed to more lymphocytes activated.


Assuntos
Pontos de Acupuntura , Imunidade Celular/efeitos dos fármacos , Linfonodos/fisiopatologia , Linfócitos/imunologia , Vacinação/veterinária , Animais , Feminino , Ratos , Ratos Sprague-Dawley
5.
Oxid Med Cell Longev ; 2019: 8465030, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178974

RESUMO

Previous investigation showed that ginsenoside Rg1 (Rg1) extracted from Panax ginseng C.A. Mey has antioxidative effect on oxidative stress in chickens. The present study was designed to investigate the protective effects of Rg1 on chicken lymphocytes against hydrogen peroxide-induced oxidative stress and the potential mechanisms. Cell viability, apoptotic cells, malondialdehyde, activity of superoxide dismutase, mitochondrial membrane potential, and [Ca2+]i concentration were measured, and transcriptome analysis and quantitative real-time polymerase chain reaction were used to investigate the effect of Rg1 on gene expression of the cells. The results showed that treatment of lymphocytes with H2O2 induced oxidative stress and apoptosis. However, pretreatment of the cells with Rg1 dramatically enhanced cell viability, reduced apoptotic cells, and decreased oxidative stress induced by H2O2. In addition, Rg1 reduced these H2O2-dependent decreases in mitochondrial membrane potential and reversed [Ca2+]i overload. Transcriptome analysis showed that 323 genes were downregulated and 105 genes were upregulated in Rg1-treated cells. The differentially expressed genes were involved in Toll-like receptors, peroxisome proliferator-activated receptor signaling pathway, and cytokine-cytokine receptor interaction. The present study indicated that Rg1 may act as an antioxidative agent to protect cell damage caused by oxidative stress via regulating expression of genes such as RELT, EDA2R, and TLR4.


Assuntos
Ginsenosídeos/uso terapêutico , Peróxido de Hidrogênio/efeitos adversos , Linfócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Baço/efeitos dos fármacos , Animais , Galinhas , Ginsenosídeos/farmacologia
6.
Biomed Pharmacother ; 116: 108970, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31103823

RESUMO

Polymyxin E (PME) plays an important role in fighting against Gram-negative bacterial infections; however, it causes nephrotoxicity, which limits its clinical use. The aim of this study was to investigate the protective effects of a plant extract Panax notoginseng saponins (PNS) on PME-induced nephrotoxicity in mice. In vivo studies showed that PNS significantly reduced blood urea nitrogen (BUN), serum creatinine (CRE) and number of apoptotic cells in kidney, as well as renal histopathological damage which increased in the presence of PME, and suppressed PME-induced oxidative stress in kidney, as shown by the up-regulation of superoxide dismutase (SOD) and the down-regulation of malondialdehyde (MDA) levels. Furthermore, PNS inhibited the expression of Bax, while increased the expression of Bcl-2 compared to the PME-treated group. In vitro studies showed that PNS decreased intracellular reactive oxygen species (ROS) and MDA levels, increased glutathione (GSH) levels, and enhanced the activity of SOD and glutathione peroxidase (GSH-Px) in murine renal tubular epithelial cells (TCMK-1 cells). In addition, PNS enhanced cell viability and the expression of Bcl-2, restored the mitochondrial membrane potential, inhibited the expression of Bax, inhibited the activity of caspase-3 and caspase-9, and reduce apoptotic rate in PME-treated TCMK-1 cells. PNS could reduce PME-induced nephrotoxicity. The protective effects could result from inhibition of oxidative stress, and prevention of cell apoptosis via the mitochondrial pathway. These findings highlight the potential of PNS as a safe adjunct for ameliorating the nephrotoxicity.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Rim/patologia , Substâncias Protetoras/farmacologia , Saponinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , Colistina , Ativação Enzimática/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Malondialdeído/metabolismo , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
7.
Microbiol Immunol ; 62(3): 187-194, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29280507

RESUMO

In the present study, the adjuvant effect of soybean oil containing ginseng root saponins (SO-GS-R) on the immune response to foot-and-mouth disease vaccine (FMDV) in mice was investigated. When immunized with FMDV antigen emulsified in an SO-GS-R formulation, mice generated remarkably higher serum antibody and cytokine responses than mice immunized with FMDV antigen alone. To elucidate the mechanisms underlying the adjuvant effect of SO-GS-R, we measured cytokines in serum and muscle tissue after intramuscular injection of SO-GS-R. The results showed that injection of SO-GS-R significantly increased the levels of IL-1ß, IL-5, IL-6, G-CSF, KC, MCP-1, MIP-1α, and MIP-1ß in both serum and muscle. These results suggested that SO-GS-R recruits neutrophils, eosinophils, T cells and macrophages, causing immune cell recruitment at the injection site, driving antigen-presenting cells to actively participate in the onset of immunity, and amplifying the immune responses. Considering its adjuvant activity and plant-derived properties, SO-GS-R should be further studied for its adjuvant effect on vaccines used in food animals.


Assuntos
Adjuvantes Imunológicos/farmacologia , Citocinas/biossíntese , Febre Aftosa/prevenção & controle , Imunização , Panax/imunologia , Saponinas/imunologia , Óleo de Soja/imunologia , Vacinas Virais/imunologia , Ração Animal , Animais , Anticorpos Antivirais/sangue , Quimiocina CCL2/sangue , Quimiocina CCL3/sangue , Quimiocina CCL4/sangue , Quimiocina CXCL1/sangue , Citocinas/sangue , Feminino , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Fator Estimulador de Colônias de Granulócitos/sangue , Imunoglobulina G/sangue , Injeções Intramusculares , Interleucina-1beta/sangue , Interleucina-5/sangue , Interleucina-6/sangue , Camundongos , Camundongos Endogâmicos BALB C , Músculos/imunologia , Óleos de Plantas/farmacologia , Saponinas/farmacologia , Óleo de Soja/química , Fatores de Tempo , Vacinação
8.
Antiviral Res ; 132: 92-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27241688

RESUMO

Vaccination using attenuated vaccines remains an important method to control animal infectious diseases. The present study evaluated ginseng stem-leaf saponins (GSLS) and thimerosal (TS) for their adjuvant effect on an attenuated pseudorabies virus (aPrV) vaccine in mice. Compared to the group immunized with aPrV alone, the co-inoculation of GSLS and/or TS induced a higher antibody response. Particularly, when administered together with GSLS-TS, the aPrV vaccine provoked a higher serum gB-specific antibody, IgG1 and IgG2a levels, lymphocyte proliferative responses, as well as production of cytokines (IFN-γ, IL-12, IL-5 and IL-10) from lymphocytes, and more importantly provided an enhanced cytotoxicity of NK cells and protection against virulent field pseudorabies virus challenge. Additionally, the increased expression of miR-132, miR-146a, miR-147 and miR-155 was found in murine macrophages cultured with GSLS and/or TS. These data suggest that GSLS-TS as adjuvant improve the efficacy of aPrV vaccine in mouse model and have potential for the development of attenuated viral vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Herpesvirus Suídeo 1/imunologia , Saponinas/farmacologia , Timerosal/farmacologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Linhagem Celular , Citocinas/biossíntese , Sinergismo Farmacológico , Feminino , Imunidade Inata/efeitos dos fármacos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , Panax/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Caules de Planta/química , Pseudorraiva/imunologia , Pseudorraiva/prevenção & controle , Saponinas/química , Timerosal/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA