Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 264: 115466, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714037

RESUMO

Calcium peroxide (CP) is an oxidizing agent that can gradually release hydrogen peroxide (HP) to achieve selective killing of cyanobacteria in water blooms, and reduce the phosphorus content in the water column. Despite the potential of CP for use in cyanobacterial water bloom disposal, there is a lack of research on the mechanism of oxidative damage on cyanobacterial cells by calcium peroxide. Further studies are required to comprehend the underlying scientific principles and potential risks and benefits of applying this approach to cyanobacteria disposal. In this investigation, we employed varying doses of CP for the treatment of Microcystis aeruginosa (M. aeruginosa), which resulted in the following findings: (1) the HP released from CP can damage the photosystem II of M. aeruginosa, reduce cell photosynthetic pigment content, intensify the degree of membrane lipid peroxidation, and increase the extracellular protein content; (2) CP significantly increased the soluble extracellular polysaccharide (sEPS) and bound extracellular polysaccharide (bEPS) content of cells (p < 0.05), causing the cells to exist as agglomerates and effectively allowing them to flocculate and precipitate, reducing the turbidity of the water body; (3) The increased dose elevated the pH and calcium ions significantly decreased the orthophosphate content, resulting in an increase in extracellular alkaline phosphatase activity, but possibly increasing the total extracellular nitrogen content. These results suggested that CP is an effective chemical algaecide for cyanobacteria, and has the potential to be applied to dispose of cyanobacterial blooms while reducing the phosphorus content of the water column and further inhibiting the growth and proliferation of cells.


Assuntos
Microcystis , Peróxido de Hidrogênio , Oxidantes , Fósforo
2.
J Environ Manage ; 318: 115542, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35763998

RESUMO

Knowledge of phytoplankton limiting factors is essential for cost-efficient lake eutrophication management. Herein, we propose a statistical framework to explore site-specific phytoplankton limiting factors and their dependence on water depth (WD) in 54 lakes in the Chinese Eastern Plains ecoregion. First, the maximal chlorophyll a (Chla) response to total N (TN) or P (TP), representing a region-specific "standard" model where phytoplankton were primarily N- or P-limited, was quantified using a 95% quantile regression. Second, site-specific limiting factors were identified using analogical residual analysis. N- or P-limitation was inferred if FractionTN (i.e. fraction of Chla observed and predicted by the "standard" model for a given TN) > 0.95 or FractionTP >0.95; if both FractionTN and FractionTP <0.95 in a specific environmental condition (e.g. high non-algal turbidity), light limitation was suggested. As a result, 5%, 7%, 4%, 36%, 16%, 2%, and 30% of the sampling sites were limited by N, P, N+P, light availability, rapid flushing, abundant macrophytes, and unmeasured factors, respectively. Bloom control suggestions in the short run are proposed considering these actual limiting factors. Furthermore, the maximal FractionTN or FractionTP response to WD was explored, reflecting the effect of WD on FractionTN (or FractionTP) without significant confounders. The results indicated that phytoplankton in the studied freshwaters would be potentially light-limited, N-limited, N+P-co-limited, or P-limited depending on WD (<1.8, 1.8-2.1, 2.1-5.2, or >5.2 m, respectively), because N will gradually become surplus with increasing WD, while at very shallow depths, strong sediment re-suspension induces light limitation. This finding implies that long-term nutrient management strategies in the studied freshwaters that have WDs of 0-2.1, 2.1-5.2, and >5.2 m can entail control of N, N+P, and P, respectively. This study provides essential information for formulating context-dependent bloom control for lakes in our study area and serves as a valuable reference for developing a cost-efficient eutrophication management framework for other regions.


Assuntos
Cianobactérias , Lagos , China , Clorofila A , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Fósforo/análise , Fitoplâncton , Água
3.
Environ Sci Pollut Res Int ; 24(10): 9251-9258, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28224338

RESUMO

The mechanisms of hydrodynamic fluctuation that affect cyanobacterial physiological aspects are still unclear. This study was conducted to screen the effects of hydrodynamic fluctuation on phosphorus (P) uptake by Microcystis aeruginosa. Four levels of circumfluence (0, 100, 200, and 300 rpm) and three concentrations of P (0.5, 2.0, and 5.0 mgL-1) were used, and the specific growth rate, cell viability, P uptake kinetic, and alkaline phosphatase activity (APA) were determined. Results showed that M. aeruginosa had a higher specific growth rate, cell viability, and P uptake rate at low and moderate circumfluence, APA increased with a decrease of the cellular P quota (Qp). Turbulence at 300 rpm negatively affected the metabolic activity: the P uptake rate and affinity were reduced significantly (p < 0.05), APA decreased due to the high Qp (p < 0.05), which led to a decline in the specific growth rate and cell viability. It revealed that hydrodynamics could change P uptake and growth of M. aeruginosa. The P absorption capacity and affinity decreased under high turbulence, which led to the inhibition of cyanobacterial growth. It was deduced that high level of artificial turbulence could be used to decrease the risk of cyanobacterial bloom. On the other hand, increasing additional P loading could enhance the adaptability of M. aeruginosa to turbulence, which weakened the inhibition effect of high turbulence on algal growth, and reduced the effects of artificial turbulence on water bloom.


Assuntos
Microcystis/efeitos dos fármacos , Fósforo/metabolismo , Cianobactérias/metabolismo , Hidrodinâmica
4.
Environ Sci Pollut Res Int ; 23(17): 17774-83, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27250085

RESUMO

Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, ß-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive phosphate, and thereby facilitating phytoplankton growth in water column.


Assuntos
Monitoramento Ambiental , Lagos/química , Fósforo/análise , Poluentes Químicos da Água/análise , Fosfatase Alcalina , Fracionamento Químico , China , Clorofila , Eutrofização , Sedimentos Geológicos/química , Ferro , Oxirredução , Água
5.
Environ Sci Pollut Res Int ; 23(4): 3569-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490936

RESUMO

An investigation was conducted in the Three Gorges Reservoir (TGR) seasonally from September 2010 to June 2011 to screen the distribution pattern of suspended particulate matter (SPM). Concentration of SPM, particulate nitrogen (PN), particulate phosphorus (PP), bioavailable particulate phosphorus (BAPP), and chlorophyll a (Chl a) were determined synchronously. Concentration of SPM was higher in the flood season than in the dry season and higher in the mainstream than in the tributaries. Chl a, PN, PP, and BAPP showed similar temporal pattern with SPM distribution. Particulate elements were significantly correlated with concentrations of SPM (p < 0.05). The proportion of algae-derived SPM in total SPM was higher in the tributaries than that in the mainstream. The results revealed that the spatiotemporal heterogeneity determined by hydrodynamics was the characteristic of SPM distribution. The source of SPM was mostly allochthonous. It could be deduced that SPM was an important factor affecting the water quality and algal growth in TGR by releasing or absorbing particulate nutrient.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Material Particulado/análise , Rios/química , Poluentes Químicos da Água/análise , China , Clorofila/análise , Clorofila A , Inundações , Nitrogênio/análise , Fósforo/análise , Estações do Ano , Análise Espaço-Temporal , Qualidade da Água
6.
Water Environ Res ; 84(12): 2133-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23342945

RESUMO

A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L(-1) black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L(-1). In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem.


Assuntos
Acacia , Cianobactérias/efeitos dos fármacos , Ecossistema , Eutrofização/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Extratos Vegetais/farmacologia , Biodegradação Ambiental , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA