Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Care ; 19: 255, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073666

RESUMO

INTRODUCTION: Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. METHODS: Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. RESULTS: High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. CONCLUSIONS: The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.


Assuntos
Altitude , Hemorragia Cerebral/terapia , Oxigenoterapia Hiperbárica , Animais , Encéfalo/metabolismo , Edema Encefálico/terapia , Hemorragia Cerebral/patologia , Ácido Glutâmico/metabolismo , Ácido Láctico/metabolismo , Modelos Animais , Neurônios/patologia , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Suínos
2.
J Neuroinflammation ; 11: 59, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24669820

RESUMO

BACKGROUND: Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of thiscascade. In the current study, we tested the hypothesis that curcumin, a phytochemical compound with potent anti-inflammatory properties that is extracted from the rhizome Curcuma longa, alleviates acute inflammatory injury mediated by TLR4 following TBI. METHODS: Neurological function, brain water content and cytokine levels were tested in TLR4⁻/⁻ mice subjected to weight-drop contusion injury. Wild-type (WT) mice were injected intraperitoneally with different concentrations of curcumin or vehicle 15 minutes after TBI. At 24 hours post-injury, the activation of microglia/macrophages and TLR4 was detected by immunohistochemistry; neuronal apoptosis was measured by FJB and TUNEL staining; cytokines were assayed by ELISA; and TLR4, MyD88 and NF-κB levels were measured by Western blotting. In vitro, a co-culture system comprised of microglia and neurons was treated with curcumin following lipopolysaccharide (LPS) stimulation. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation. RESULTS: The protein expression of TLR4 in pericontusional tissue reached a maximum at 24 hours post-TBI. Compared with WT mice, TLR4⁻/⁻ mice showed attenuated functional impairment, brain edema and cytokine release post-TBI. In addition to improvement in the above aspects, 100 mg/kg curcumin treatment post-TBI significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release and neuronal apoptosis in WT mice. Furthermore, Western blot analysis indicated that the levels of TLR4 and its known downstream effectors (MyD88, and NF-κB) were also decreased after curcumin treatment. Similar outcomes were observed in the microglia and neuron co-culture following treatment with curcumin after LPS stimulation. LPS increased TLR4 immunoreactivity and morphological activation in microglia and increased neuronal apoptosis, whereas curcumin normalized this upregulation. The increased protein levels of TLR4, MyD88 and NF-κB in microglia were attenuated by curcumin treatment. CONCLUSIONS: Our results suggest that post-injury, curcumin administration may improve patient outcome by reducing acute activation of microglia/macrophages and neuronal apoptosis through a mechanism involving the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages in TBI.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Encefalite/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Edema Encefálico/diagnóstico , Edema Encefálico/etiologia , Lesões Encefálicas/complicações , Lesões Encefálicas/genética , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Modelos Animais de Doenças , Regulação para Baixo/genética , Embrião de Mamíferos , Encefalite/etiologia , Encefalite/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/genética , Fatores de Tempo , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA