Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 89(11): 1087-1096, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37044130

RESUMO

Over the last years, Sideritis extracts were shown to improve memory. However, their potential to promote the generation of new neurons, starting with the neuronal differentiation of neural stem cells, remains unexplored. Therefore, the present study aimed to evaluate the neurogenic effects of different Sideritis infusions in neural stem and precursor cells and their impact on cell viability. Moreover, the metabolic fingerprints were recorded using LC-DAD, LC-HRESIMS, and GC-MS. The neurogenic potential of infusions of the eight Sideritis taxa tested was as potent as the classical neuronal inducer combination of retinoic acid and valproic acid. Further cytotoxicity assays revealed that the IC50 values of the extracts were between 163 and 322 µg/mL. Hierarchical cluster analyses of the metabolic fingerprints unveiled that the two Sideritis taxa with the lowest IC50 values were the most divergent in the analytical techniques used. As the analysis focused on polyphenols, it is reasonable to assume that these compounds are responsible for the effect on the cell viability of SH-SY5Y neuroblastoma cells. This study is the first report on the neurogenic potential of Sideritis taxa and might support the use of Sideritis herbal preparations in the context of neurodegenerative diseases.


Assuntos
Neurogênese , Extratos Vegetais , Sideritis , Sideritis/química , Sideritis/classificação , Extratos Vegetais/farmacologia , Neurogênese/efeitos dos fármacos , Animais , Camundongos , Estruturas Embrionárias/citologia , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Encéfalo/citologia , Especificidade da Espécie
2.
J Nat Prod ; 84(10): 2675-2682, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34542287

RESUMO

Loss of neuronal tissue is a hallmark of age-related neurodegenerative diseases. Since adult neurogenesis has been confirmed in the human brain, great interest has arisen in substances stimulating the endogenous neuronal regeneration mechanism based on adult neural stem cells. Medicinal plants are a valuable source of neuroactive small molecules. In the structure-activity study presented here, the activities of prenyl- and pyranochalcones were compared to each other, using a differentiation assay based on the doublecortin promoter sequences. The latter revealed that the pyrano ring is a crucial structural element for the induction of neuronal differentiation of adult neural stem cells, while compounds with a prenyl group show significantly lower activities. Furthermore, a decrease of pro-differentiation activity was observed following structural modifications, such as substitutions on the pyrano ring and on the B-ring of the chalcone. We also initiated the elucidation of the structural characteristics of the newly discovered lead substance xanthohumol C, which correlated with the activation of the doublecortin promoter during neuronal differentiation.


Assuntos
Chalconas/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese , Regeneração , Animais , Diferenciação Celular/efeitos dos fármacos , Humulus/química , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
3.
Nutrients ; 12(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188044

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). In recent years, vitamin D has gained attention, as low serum levels are suspected to increase the risk for MS. Cholecalciferol supplementation has been tested in several clinical trials, since hypovitaminosis D was linked to higher disease activity and may even play a role in long-term outcome. Here, we review the current understanding of the molecular effects of vitamin D beyond calcium homeostasis, the potential beneficial action in MS and hazards including complications of chronic and high-dose therapy. In clinical trials, doses of up to 40,000 IU/day were tested and appeared safe as add-on therapy for short-term periods. A recent meta-analysis of a randomized, double-blind, placebo-controlled clinical trial investigating vitamin D as add-on therapy in MS, however, suggested that vitamin D had no therapeutic effect on disability or relapse rate. We recognize a knowledge gap for chronic and high-dose therapy, which can lead to life-threatening complications related to vitamin D toxicity including renal failure, cardiac arrythmia and status epilepticus. Moreover, vitamin D toxicity may manifest as fatigue, muscle weakness or urinary dysfunction, which may mimic the natural course of progressive MS. Given these limitations, vitamin D supplementation in MS is a sensitive task which needs to be supervised by physicians. While there is strong evidence for vitamin D deficiency and the development of MS, the risk-benefit profile of dosage and duration of add-on supplementation needs to be further clarified.


Assuntos
Suplementos Nutricionais , Esclerose Múltipla/tratamento farmacológico , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/efeitos adversos , Vitamina D/uso terapêutico , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/patologia
4.
Planta Med ; 85(16): 1233-1241, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31610603

RESUMO

The chroman-like chalcone Xanthohumol C, originally found in hops, was demonstrated to be a potent neuroregenerative and neuroprotective natural product and therefore constitutes a strong candidate for further pharmaceutical research. The bottleneck for in vivo experiments is the low water solubility of this chalcone. Consequently, we developed and validated a suitable formulation enabling in vivo administration. Cyclodextrins were used as water-soluble and nontoxic complexing agents, and the complex of Xanthohumol C and 2-hydroxypropyl-ß-cyclodextrin was characterized using HPLC, HPLC-MS, NMR, and differential scanning calorimetry. The water solubility of Xanthohumol C increases with increasing concentrations of cyclodextrin. Using 50 mM 2-hydroxypropyl-ß-cyclodextrin, solubility was increased 650-fold. Furthermore, in vitro bioactivity of Xanthohumol C in free and complexed form did not significantly differ, suggesting the release of Xanthohumol C from 2-hydroxypropyl-ß-cyclodextrin. Finally, a small-scaled in vivo experiment in a rat model showed that after i. p. administration of the complex, Xanthohumol C can be detected in serum, the brain, and the cerebrospinal fluid at 1 and 6 h post-administration. Mean (± SD) Xanthohumol C serum concentrations after 1, 6, and 12 h were determined as 463.5 (± 120.9), 61.9 (± 13.4), and 9.3 (± 0.8) ng/mL upon i. v., and 294.3 (± 22.4), 45.5 (± 0.7), and 13 (± 1.0) ng/mL after i. p. application, respectively. Accordingly, the formulation of Xanthohumol C/2-hydroxypropyl-ß-cyclodextrin is suitable for further in vivo experiments and further pharmaceutical research aiming for the determination of its neuroregenerative potential in animal disease models.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Benzopiranos/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Animais , Benzopiranos/química , Benzopiranos/farmacocinética , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Espectroscopia de Ressonância Magnética , Ratos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA