Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446385

RESUMO

Lung cancer is one of the most common cancers in the population and is characterized by non-specific symptoms that delay the diagnosis and reduce the effectiveness of oncological treatment. Due to the difficult placement of the tumor, one of the main methods of lung cancer treatment is radiotherapy, which damages the DNA of cancer cells, inducing their apoptosis. However, resistance to ionizing radiation may develop during radiotherapy cycles, leading to an increase in the number of DNA points of control that protect cells from apoptosis. Cancer stem cells are essential for radioresistance, and due to their ability to undergo epithelial-mesenchymal transition, they modify the phenotype, bypassing the genotoxic effect of radiotherapy. It is therefore necessary to search for new methods that could improve the cytotoxic effect of cells through new mechanisms of action. Chinese medicine, with several thousand years of tradition, offers a wide range of possibilities in the search for compounds that could be used in conventional medicine. This review introduces the potential candidates that may present a radiosensitizing effect on lung cancer cells, breaking their radioresistance. Additionally, it includes candidates taken from conventional medicine-drugs commonly available in pharmacies, which may also be significant candidates.


Assuntos
Neoplasias Pulmonares , Farmácias , Humanos , Medicina Tradicional Chinesa , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Apoptose/efeitos da radiação , Linhagem Celular Tumoral
2.
Oxid Med Cell Longev ; 2023: 6144967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644578

RESUMO

Introduction: Obesity and metabolic syndrome (MetS) constitute a rapidly increasing health problem and contribute to the development of multiple comorbidities like acute and chronic kidney disease. Insulin resistance, inappropriate lipolysis, and excess of free fatty acids (FFAs) are associated with glomerulus hyperfiltration and atherosclerosis. The important component of MetS, oxidative stress, is also involved in the destabilization of kidney function and the progression of kidney injury. Natural polyphenols have the ability to reduce the harmful effect of reactive oxygen and nitrogen species (ROS/RNS). Extract derived from Punica granatum L. is rich in punicalagin that demonstrates positive effects in MetS and its associated diseases. The aim of the study was to investigate the effect of bioactive substances of pomegranate peel to kidney damage associated with the MetS. Methods: In this study, we compared biomarkers of oxidative stress in kidney tissue of adult male Zucker Diabetic Fatty (ZDF) rats with MetS and healthy controls that were treated with Punica granatum L. extract at a dose of 100 or 200 mg/kg. Additionally, we evaluated the effect of polyphenolic extract on kidney injury markers and remodeling. The concentration of ROS/RNS, oxLDL, glutathione (GSH), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), metalloproteinase 2 and 9 (MMP-2, MMP-9), and the activity of superoxide dismutase (SOD) and catalase (CAT) were measured. Results: The data showed significant differences in oxidative stress markers between treated and untreated MetS rats. ROS/RNS levels, oxLDL concentration, and SOD activity were lower, whereas CAT activity was higher in rats with MetS receiving polyphenolic extract. After administration of the extract, markers for kidney injury (NGAL, KIM-1) decreased. Conclusion: Our study confirmed the usefulness of pomegranate polyphenols in the treatment of MetS and the prevention of kidney damage. However, further, more detailed research is required to establish the mechanism of polyphenol protection.


Assuntos
Nefropatias , Síndrome Metabólica , Extratos Vegetais , Punica granatum , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Glutationa/metabolismo , Rim , Nefropatias/tratamento farmacológico , Lipocalina-2/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/metabolismo , Punica granatum/química , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
3.
Front Biosci (Landmark Ed) ; 27(4): 114, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468673

RESUMO

BACKGROUND: Ischemia/reperfusion (I/R) is a pivotal mechanism of organ injury during clinical stetting for example for cardiopulmonary bypasses. The generation of reactive oxygen species (ROS) during I/R induces oxidative stress that promotes endothelial dysfunction, DNA dissociation and local inflammation. In turn, those processes induce cytokine release, resulting in damage to cellular structures and cell death. One of the major psychoactive compounds of Cannabis is delta-9-tetrahydrocannabinol (Δ9-THC), which is known as an anti-inflammatory mediator. Our research aimed to test if Δ9-THC may be protective in the treatment of cardiovascular system dysfunction arising from I/R heart injury. METHODS: Two experimental models were used: isolated rat hearts perfused with the Langendorff method and human cardiac myocytes (HCM) culture. Rat hearts and HCM underwent ex vivo/chemical in vitro I/R protocol with/without Δ9-THC treatment. The following parameters were measured: cell metabolic activity, morphology changes, cell damage as lactate dehydrogenase (LDH) activity, ceramide kinase (CERK) activity, ROS level, total antioxidant capacity (TAC) and heart hemodynamic parameters. RESULTS: Δ9-THC protected the heart, as evidenced by the improved recovery of cardiac function (p < 0.05, N = 3-6). Cells subjected to I/R showed lower cytoplasmic LDH activity, and 10 µM Δ9-THC treatment reduced cell injury and increased LDH content (p = 0.019, N = 6-9). Morphology changes of HCM-spherical shape, vacuolisation of cytoplasm and swollen mitochondria-were inhibited due to Δ9-THC treatment. I/R condition affected cell viability, but 10 µM Δ9-THC decreased the number of dead cells (p = 0.005, N = 6-9). The total level of CERK was lower in the I/R group, reflecting oxidative/nitrosative stress changes. The administration of Δ9-THC effectively increased the production of CERK to the level of aerobic control (p = 0.028, N = 6-9). ROS level was significantly decreased in I/R cells (p = 0.007, N = 6-8), confirming oxidative stress, while administration of 10 µM Δ9-THC enhanced TAC in cardiomyocytes subjected to I/R (p = 0.010, N = 6-8). CONCLUSIONS: Δ9-THC promotes the viability of cardiomyocytes, improves their metabolic activity, decreases cell damage and restores heart mechanical function, serving as a cardioprotective. We proposed the use of Δ9-THC as a cardioprotective drug to be, administered before onset of I/R protocol.


Assuntos
Dronabinol , Alucinógenos , Animais , Antioxidantes , Cardiotônicos/farmacologia , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Alucinógenos/farmacologia , Ratos , Espécies Reativas de Oxigênio , Reperfusão
4.
Biomed Res Int ; 2017: 9352015, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28770228

RESUMO

BACKGROUND: High on-aspirin treatment platelets reactivity (HPR) is a significant problem in long-term secondary prevention of cardiovascular events. We hypothesize that imbalance between platelets MMPs/TIMPs results in cardiovascular disorders. We also explored whether chronically elevated blood glucose affects MMP-2/TIMP-4 release from platelets. MATERIALS AND METHODS: Seventy patients with stable coronary artery disease, supplemented with aspirin, participated in this pilot study. The presence of HPR and/or diabetes mellitus was considered as the differentiating factor. Light aggregometry, impedance aggregometry, and ELISA tests for TXB2, MMP-2, MMP-9, and TIMP-4 were performed in serum, plasma, platelet-rich plasma, and platelets-poor plasma, as appropriate. RESULTS: Aspirin-HPR did not affect plasma MMP-2, MMP-9, and TIMP-4. Arachidonic acid-induced aggregation of platelets from aspirin-HPR patients did not lead to increased release of MMP-2, MMP-9, and TIMP-4. Studying patients at the lowest TXB2 serum concentration quartile revealed that high concentration of plasma TIMP-4 and TIMP-4 negatively correlated with TXB2 and platelet aggregation. Diabetics showed an increased plasma MMP-2 as well as an increased MMP-2 in supernatants after platelet aggregation. However, diabetes mellitus did not affect MMP-9 and TIMP-4. CONCLUSION: Aspirin-HPR did not affect the translocation and release of MMPs and TIMP-4 from platelets. TIMP-4 may serve as a marker of TXA2-mediated platelet aggregation. Chronically elevated plasma glucose increases plasma MMP-2, and HPR potentiates this phenomenon.


Assuntos
Aspirina/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Diabetes Mellitus/microbiologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Doença da Artéria Coronariana/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Testes de Função Plaquetária/métodos , Plasma Rico em Plaquetas/efeitos dos fármacos , Plasma Rico em Plaquetas/metabolismo , Prevenção Secundária/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA