Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 2871-2880, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629549

RESUMO

Presently, the improvement of soil organic matter is the basis to ensure food security, but the accumulation and transformation characteristics of soil phosphorus (P) as affected by organic matter remain unclear. The accumulation, transformation, and migration characteristics of soil P in different soil layers of vegetable fields were researched under the application of organic materials. Six treatments were set up in the experiment:control (no fertilization), traditional fertilizer application by farmers, biochar, chicken manure, food waste, and straw application. Available phosphorus (Olsen-P), water-soluble phosphorus (CaCl2-P) content, soil phosphorus forms, soil organic matter (SOM), and pH were determined during the pepper harvest period. In the 0-5 cm and 5-10 cm soil layers, the available phosphorus content of traditional fertilization of farmers was higher, and the available phosphorus content of the four organic materials was in the order of straw > biochar > chicken manure > food waste. Compared to that with food waste, the straw and biochar treatments increased soil available phosphorus by 59.6%-67.3% and 29.1%-36.9%, respectively. The straw treatment could easily enhance the soil labile P pool, and soil labile P in the 0-5 cm soil layer increased by 47.3% and 35.1% compared with that under the chicken manure and food waste treatments, respectively. With the increase in soil depth, the proportion of available phosphorus in the chicken manure treatment decreased the least, and available phosphorus of the 20-30 cm soil layer accounted for 55.9% of the topsoil layer but only accounted for 16.0%-34.0% under treatment with the other three materials. Compared with that under the traditional fertilization of farmers, the pH significantly increased by 0.18-0.36 units after the application of organic fertilizer, and the pH of the chicken manure and food waste treatments was significantly higher than that of biochar and straw (P < 0.05). SOM content under the biochar treatment significantly increased by 7.7%-17.6% compared to that under the other three organic materials. Among the four organic materials, the straw treatment boosted the labile P pool the most, which was conducive to the rapid increase in plant-available P. Phosphorus was most likely to migrate downward under the chicken manure treatment. In the field management based on soil fertility enhancement, the application of biochar could not only improve soil pH and SOM but also avoid excessive accumulation of phosphorus in the surface layer, which decreases environmental risks.


Assuntos
Agricultura , Carvão Vegetal , Eliminação de Resíduos , Animais , Fósforo , Verduras , Fertilizantes , Esterco , Solo/química , Galinhas
2.
Artigo em Chinês | WPRIM | ID: wpr-1003771

RESUMO

The clinical value of Chinese patent medicine is the core direction of the development of the traditional Chinese medicine industry. The precise clinical positioning determines the way to prove the value of the drug, and is a key link to highlight the clinical value. This paper presented a case study of clinical positioning for Chinese patent medicine, namely Qizhi Tongluo capsules, and the key technical framework of precise clinical positioning of Chinese patent medicine, which was manifested as a comparison of prescription target spectral effect, discovery of core value of prescription, and confirmation of clinical positioning trial. The technical framework was designed to address a range of issues in the realm of precise clinical positioning. Before the clinical positioning trial, based on the multi-component, multi-target, and multi-phenotype data of prescription and clinical indication, the multi-omics network analysis technology was used to identify the core value of the traditional Chinese medicine varieties and predict the potential clinical advantages. Then, based on the predicted clinical advantages, reasonable efficacy indicators were selected, and the clinical efficacy was judged and verified by dynamic and flexible innovative clinical trials to improve the success rate of clinical positioning. This research paradigm integrates "omics technology" with "evidence-based" principles and follows the "precise evidence-based" concept. This research aims to provide a new strategy and method for the precise medication and positioning of Chinese patent medicine with traditional Chinese medicine characteristics after being put into the market and provide more technical thinking for traditional Chinese medicine to move towards precise medicine.

3.
Ecotoxicol Environ Saf ; 252: 114582, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731180

RESUMO

Phosphogypsum (PG) contains a lot of soluble phosphate (PO43--P) and fluorine ion (F-), which seriously has hindered the sustainable development of the phosphorous chemical industry. In this study, a new burning raw material (BRM) as an intermediate product in the cement production process was used for PO43--P and F- stabilize in PG. The stabilizing mechanism of PO43--P and F- were investigated by Fourier Transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), X-ray fluorescence (XRF) and X-ray spectroscopy system (XPS). The effect of PG and BRM weight ratio, solid-to-liquid ratio, reaction time, and reaction temperature on the concentrations of PO43--P and F- were studied. The results showed that the concentration of F- in the PG leaching solution was 8.65 mg/L and the stabilizing efficiency of PO43--P was 99.78%, as well as the pH of the PG leaching solution was 8.12 when the weight ratio of PG and BRM was 100:2, and the solid to liquid ratio was 4:1, reacting for 24 h at the temperature of 30 â„ƒ. PO43--P and F- were mostly solidified as Ca5(PO4)3F, CaPO3(OH), Ca5(PO4)3(OH), Ca2P2O7·2H2O, CaSO4PO3(OH)·4H2O, CaF2, and CaFPO3·2H2O. Leaching test results indicated that the concentrations of PO43--P, F- and heavy metals were less than the integrated wastewater discharge standard (GB8978-1996). This study provides a new harmless treatment method for PG.


Assuntos
Metais Pesados , Fósforo , Espectroscopia de Infravermelho com Transformada de Fourier , Fósforo/química , Metais Pesados/química , Sulfato de Cálcio
4.
Artigo em Chinês | WPRIM | ID: wpr-973128

RESUMO

This article has systematically reviewed the name, origin, scientific name, producing area, quality evaluation, harvesting and processing methods of Polygonati Odorati Rhizoma(POR) by consulting the materia medica, medical books, prescription books and modern literature, in order to provide a reference for the development of famous classical formulas containing POR. Yuzhu was first recorded in the Shennong Bencaojing under the name of Nyuwei. After that, Weirui was used as the rectification name in the subsequent dynasties, and in recent times, the name of Yuzhu is mostly used in materia medica and prescription books. In ancient times, there were different names for Yuzhu, such as Nyuwei, Weiwei and Weirui. The names of the three are similar and there was a mixed use of the same name and foreign matter in history. In the Tang dynasty, SU Jing listed Nyuwei with the effect of curing dysentery in the intermediate of herbal part of Xinxiu Bencao according to its different efficacy. However, based on Shennong Bencaojing, Mingyi Bielu and the different energy efficiency of medical prescriptions, SU Song of the Northern Song dynasty believed that the three were medicinal materials of different origins. In short, the names of the three have been unclear in history for a long time. According to the development of the time line, this paper examines the names and realities of the three, and concludes that the two(Weiwei and Weirui) are the same medicinal material, that is, Polygonatum odoratum of Liliaceae, and the Nyuwei is Clematis apiifolia of Ranunculaceae, and the source relationship of the three is clarified. The mainstream source of Yuzhu used in the past dynasties was the rhizome of P. odoratum, which was widely distributed in the wild and has a large amount of resources. The origins of Yuzhu recorded in ancient times were mainly Taishan in Shandong, Chuzhou and Shuzhou in Anhui, and Hanzhong in Shaanxi, in modern times, it was produced in northern Hebei and Shaoyang in Hunan with high quality, and in the modern times, Jiangbei Yuzhu from Haimen in Jiangsu, Anyuzhu from Nanling, Anqing and Tongling in Anhui, Guanyuzhu from Fengrun, Yutian, Zunhua, Huailai in Hebei and Suizhong, Jinxi, Jianchang, Lingyuan, Liaoyang, Haicheng, Gaiping in Liaoning, Xiangyuzhu from Shaoyang in Hunan are the authentic medicinal material. In ancient times, the quality of Yuzhu was good if it was fat and white, while in modern times, it is better with thick roots, bright yellow color, soft texture, no stiff skin and no oiliness. In ancient times, the origin processing of POR was mostly dried in the shade, but in modern times, it is mostly sun-dried or dried after steaming and rubbing. The ancient processing was mostly scraped off the skin and soaked in honey water and then steamed through, while the modern one is mostly washed and cut into thick slices for raw use. Based on the conclusion of the herbal textual research, it is suggested that the rhizome of P. odoratum of Liliaceae be used as the source for the development of famous classical formulas, and the corresponding specifications be selected according to the processing requirements of the prescription. In view of the Yiweitang in Wenbing Tiaobian, which uses the method of frying fragrance to achieve the effect of fragrant refreshing the spleen, it can be processed by referring to the stir-frying method in the current version of Chinese Pharmacopoeia.

5.
Artigo em Chinês | WPRIM | ID: wpr-970593

RESUMO

In this study, ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and gas chromatography-mass spectrometry(GC-MS) were combined with non-targeted metabonomic analysis based on multivariate statistics analysis, and the content of five indicative components in nardosinone was determined and compared by UPLC. The main chemical components of Nardostachyos Radix et Rhizoma with imitative wild cultivation and wild Nardostachyos Radix et Rhizoma were comprehensively analyzed. The results of multivariate statistical analysis based on liquid chromatography-mass spectrometry(LC-MS) and GC-MS were consistent. G1 and G2 of the imitative wild cultivation group and G8-G19 of the wild group were clustered into category 1, while G7 of the wild group and G3-G6 of the imitative wild cultivation group were clustered into category 2. After removing the outlier data of G1, G2, and G7, G3-G6 of the imitative wild cultivation group were clustered into one category, and G8-G19 of the wild group were clustered into the other category. Twenty-six chemical components were identified according to the positive and negative ion modes detected by LC-MS. The content of five indicative components(VIP>1.5) was determined using UPLC, revealing that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid C, linarin, nardosinone, and total content in the imitative wild cultivation group were 1.85, 1.52, 1.26, 0.90, 2.93, and 2.56 times those in the wild group, respectively. OPLS-DA based on GC-MS obtained 10 diffe-rential peaks. Among them, the relative content of α-humulene and aristolene in the imitative wild cultivation group were extremely significantly(P<0.01) and significantly(P<0.05) higher than that in the wild group, while the relative content of 7 components such as 5,6-epoxy-3-hydroxy-7-megastigmen-9-one, γ-eudesmol, and juniper camphor and 12-isopropyl-1,5,9-trimethyl-4,8,13-cyclotetrade-catriene-1,3-diol was extremely significantly(P<0.01) and significantly(P<0.05) lower than that in the wild group, respectively. Therefore, the main chemical components of the imitative wild cultivation group and wild group were basically the same. However, the content of non-volatile components in the imitative wild cultivation group was higher than that in the wild group, and the content of some volatile components was opposite. This study provides scientific data for the comprehensive evaluation of the quality of Nardostachyos Radix et Rhizoma with imitative wild cultivation and wild Nardostachyos Radix et Rhizoma.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem
6.
Artigo em Chinês | WPRIM | ID: wpr-981446

RESUMO

Huocao(a traditional Chinese herbal medicine) moxibustion is a characteristic technology in Yi medicine suitable for cold-dampness diseases. Huocao, as the moxibustion material, is confusedly used in clinical practice and little is known about its quality control. In this study, UPLC method was used to establish the chemical fingerprint of non-volatile components in Huocao, and the contents of eight phenolic acids such as chlorogenic acid were determined. Multivariate statistical analysis was performed to obtain the indicator components of Huocao for quality evaluation, and thus a comprehensive evaluation system for the quality of Huocao was built. The UPLC fingerprints of 49 batches of Huocao were established, and there were 20 common peaks, of which eight phenolic acids including neochlorogenic acid and chlorogenic acid were identified. Except for three batches of Huocao, the similarity of the other 46 batches was higher than 0.89, suggesting that the established fingerprint method could be used for quality control of the medicinal herb. The correlation coefficient between entropy weight score of the eight phenolic acids and comprehensive fingerprint score in Huocao was 0.875(P<0.01), which indicated that the eight phenolic acids could be used as indicator components for the quality evaluation of Huocao. Furthermore, in multivariate statistical analysis on the common peaks of fingerprint and the contents of the eight phenolic acids, chlorogenic acid, isochlorogenic acid A and isochlorogenic acid C were screened to be the indicator components. The results revealed that the proposed method achieved a simple and accurate quality control of Huocao based on UPLC fingerprint and multi-component content determination, which provided useful data for establishing the quality standard of Huocao.


Assuntos
Ácido Clorogênico , Entropia , Hidroxibenzoatos , Controle de Qualidade
7.
Artigo em Chinês | WPRIM | ID: wpr-980187

RESUMO

The construction of the comprehensive evaluation index system of the famous classical formula preparations after the marketing has both theoretical and practical significance. In this study, literature related to the post-marketing comprehensive evaluation of traditional Chinese medicine(TCM) compound preparations was retrieved from China National Knowledge Infrastructure(CNKI), China Science and Technology Journal Database(VIP), Wanfang Data Knowledge Service Platform(WanFang) and SinoMed from January 1, 2000 to April 30, 2022. CiteSpace 6.1.R2, a scientometrics software, was used to visualize the keywords involved, and to analyze the dynamic evolution trend and research hotspots in this field. Then, the existing comprehensive post-marketing evaluation index system of TCM compound preparations was screened and extracted, and the research status was systematically analyzed by mathematical statistics. It was found that there were problems such as the generalized boundaries between assessment dimensions and assessment elements, the lack of data sources for individual evaluation indexes, unset weight of some index system and insufficient application degree. In addition, according to the characteristics of famous classical formulas, the authors discuss the importance of evidence evaluation based on combination of disease and syndrome, pharmacovigilance of famous classical formulas preparations, and whole-process quality control of famous classical formulas, and put forward the construction strategy of comprehensive post-marketing evaluation of the famous classical formula preparations, which is oriented by clinical value, centered on evidence evaluation, and guaranteed by the whole-process quality control.

8.
Acta Pharmaceutica Sinica B ; (6): 2559-2571, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982864

RESUMO

Existing traditional Chinese medicine (TCM)-related databases are still insufficient in data standardization, integrity and precision, and need to be updated urgently. Herein, an Encyclopedia of Traditional Chinese Medicine version 2.0 (ETCM v2.0, http://www.tcmip.cn/ETCM2/front/#/) was constructed as the latest curated database hosting 48,442 TCM formulas recorded by ancient Chinese medical books, 9872 Chinese patent drugs, 2079 Chinese medicinal materials and 38,298 ingredients. To facilitate the mechanistic research and new drug discovery, we improved the target identification method based on a two-dimensional ligand similarity search module, which provides the confirmed and/or potential targets of each ingredient, as well as their binding activities. Importantly, five TCM formulas/Chinese patent drugs/herbs/ingredients with the highest Jaccard similarity scores to the submitted drugs are offered in ETCM v2.0, which may be of significance to identify prescriptions/herbs/ingredients with similar clinical efficacy, to summarize the rules of prescription use, and to find alternative drugs for endangered Chinese medicinal materials. Moreover, ETCM v2.0 provides an enhanced JavaScript-based network visualization tool for creating, modifying and exploring multi-scale biological networks. ETCM v2.0 may be a major data warehouse for the quality marker identification of TCMs, the TCM-derived drug discovery and repurposing, and the pharmacological mechanism investigation of TCMs against various human diseases.

9.
Artigo em Chinês | WPRIM | ID: wpr-996530

RESUMO

Gei Herba is a traditional folk herbal medicine with a variety of functions such as replenishing Qi and invigorating spleen, tonifying blood and nourishing Yin, moistening lung and resolving phlegm, activating blood and alleviating edema, moving Qi, and activating blood. The reports about the pharmacological effects of this herbal medicine have been increasing in recent years. By reviewing the ancient and modern literature about Gei Herba, we systematically organized the name, original plants, nature, taste, and functions of this herbal medicine, and summarized the modern pharmacological studies and clinical applications of Gei Herba in cardiovascular and cerebrovascular diseases. Gei Herba was first recorded in the name of "Dijiao" in the Geng Xin Yu Ce(《庚辛玉册》) written in the Ming Dynasty. It is derived from Geum japonicum var. chinense (Rosaceae) and sometimes confused with Adina rubella (Rubiaceae). This medicine had numerous synonyms in the local materia medica books. Gei Herba is widely distributed and harvested in summer and autumn, with the dried whole grass used as medicine. The historical records of the nature, taste, meridian tropism, main functions, and indications of Gei Herba are not consistent. It is generally believed that Gei Herba is pungent, bitter, sweet, cool, and has tropism to the liver, spleen, and lung meridians. Based on the effects of tonifying Qi, activating blood, and nourishing Yin, modern pharmacological studies have reported that the extracts of Gei Herba and the tannin phenolic acid compounds and triterpenoids isolated from Gei Herba have therapeutic effects on cardiovascular and cerebrovascular diseases such as hypertension, myocardial ischemia, cerebral ischemia, and vascular dementia. This study provides a reference for discovering the clinical advantages of Gei Herba and developing new drugs.

10.
Artigo em Chinês | WPRIM | ID: wpr-989587

RESUMO

The standardization of classification methods of Traditional Chinese Medicine(TCM) ancient books can provide a clear and reliable reference for all kinds of TCM ancient books collection units, which can also promote the sharing and utilization of TCM ancient books. We studied and investigated the classification methods of TCM ancient books in past dynasties. The standard on classification of TCM ancient books was formulated by compared with the classification table of Zhongguo Zhongyi Guji Zongmu, and referred to the classification table of Zhonghua Guji Zongmu. This standard specified three-level categories and classification principles of TCM ancient books, and mainly composed of basic categories, three-level category table, classification principles and examples, and instructions for use.

11.
Artigo em Chinês | WPRIM | ID: wpr-940343

RESUMO

Through consulting the ancient herbal medicine, prescription books and medical books, combined with modern relevant literature, standards and other information, this paper made a textual research on the name, origin, producing areas, harvesting and processing methods of Astragali Radix according to different historical development periods, providing a basis for the development of famous classical formulas containing Astragali Radix. According to the textual research, the original name of Astragali Radix is Huangqi, and "Qi" originally refers to the medicinal material Zhimu. Some people began to mistake it for Huangqi in the Ming dynasty, and then gradually used Astragali Radix as a medicinal material. The mainstream basis of Astragali Radix can be determined as the dried roots of Astragalus membranaceus var. mongholicus or A. membranaceus. In different historical periods, A. floridus, A. chrysopterus, A. emestii and other plants of Astragalus or even non-Astragalus were used as local Astragali Radix. The earliest production areas of Astragali Radix were Sichuan, Shaanxi, and Gansu, and then gradually expanded to the northeast. Since the Song dynasty, Mianqi in Shanxi province has been regarded as the genuine variety. In the Qing dynasty, besides Shanxi province, Inner Mongolia was also regarded as a genuine place. In the Republic of China, Huangqi produced in northeast China was praised highly. It is mainly produced in Shanxi, Inner Mongolia, Gansu, northeast and other provinces. The main commodity is cultivated products, and the quality of wild imitation cultivation in Datong and Xinzhou is better than other places. There are many processing methods of Huangqi recorded in the materia medica and prescription books, most of which are raw products, and honey processing is the mainstream of processed products. Based on the current situation of resource cultivation and production, 11 famous classical formulas in The Catalogue of Ancient Famous Classical Formulas (The First Batch) containing Huangqi suggested that all use A. membranaceus var. mongholicus, especially those from Datong and Xinzhou in Shanxi Province. In addition to honey processing of Qingxin Lianziyin, it is suggested to use raw products for other formulas.

12.
Artigo em Chinês | WPRIM | ID: wpr-940342

RESUMO

Through consulting the ancient and modern literature, this paper makes a textual research on the name, origin, producing area, harvesting and processing of Poria, so as to provide a basis for the development of the famous classical formulas containing this medicinal material. The description of Poria and the characteristics of the attached figures in the Chinese herbal literature of the past dynasties are consistent with Poria cocos. The medicinal parts are dried sclerotia or P. cocos peel. Poria was originally produced in Taishan, Shandong province. In the Tang dynasty, along with the change of pine forest resources, producing area of Poria was transferred to Huashan area in Shaanxi province. In the Ming dynasty, the authentic producing area was transferred to Yunnan, and has continued to now. In ancient times, the processing methods of Poria were steaming, boiling, slicing, mashing and other subsequent processing after peeling. It is suggested that Poria in famous classical formulas should be sliced according to the 2020 edition of Chinese Pharmacopoeia.

13.
Artigo em Chinês | WPRIM | ID: wpr-940341

RESUMO

Through consulting the ancient and modern literature, this paper makes a textual research on the name, origin, producing area, harvesting and processing methods of Asini Corii Colla, so as to provide a basis for the development of the famous classical formulas containing the medicinal material. Before the Tang dynasty, cow leather was the main source of Asini Corii Colla, and donkey was rare as an introduced species. From the end of Tang dynasty to Song dynasty, due to the development of doctors' understanding of the properties and effects of medicines, with the increase of the number of donkeys and the limitation of the use of cow leather, the source of Asini Corii Colla changed from cow leather to donkey skin. During the Ming and Qing dynasties, the theory of medicine property was further developed, and all doctors basically agreed that black donkey skin and E-well water were two essential factors for making genuine Asini Corii Colla. Therefore, it is suggested that Asini Corii Colla should take Equus asinus as the authentic origin in the development of the famous classical formulas, attach importance to the quality of water source, take Liaocheng in Shandong province as the authentic producing area, and the processing should be carried out in accordance with the requirements of the 2020 edition of Chinese Pharmacopoeia.

14.
Artigo em Chinês | WPRIM | ID: wpr-940340

RESUMO

Based on the ancient literature of all dynasties, this article makes a systematic textual research on the name, origin, producing area, quality, harvesting and processing of Magnoliae Officinalis Cortex used in the famous classical formulas, and clarifies its information of each link in different historical periods, so as to provide a reference and basis for the development and utilization of the related formulas. The results showed that the main varieties of Magnoliae Officinalis Cortex were Magnolia officinalis or M. officinalis var. biloba. The main production areas are Hubei, Sichuan, Chongqing and other places, forming the famous authentic medicine. The processing methods of the past dynasties are mainly cleansing and processing with ginger. In the formulas clearly marked with ginger processing, ginger-processed products is suggested to choose. If not clearly marked, raw or ginger-processed products can be used as needed.

15.
Artigo em Chinês | WPRIM | ID: wpr-940339

RESUMO

This paper made a systematic textual research on the historical evolution and changes of the name, origin, producing area, harvesting and processing methods of Jujubae Fructus used in famous classical formulas by referring to the ancient literature, so as to provide a basis for the sampling and research of the formulas containing the medicinal materials. According to textual research, there are many names of Jujubae Fructus, most of which are named by characters or producing areas, which are called Dazao. Ziziphus jujuba has always been the mainstream variety in all dynasties, and Z. jujuba var. inemmis has also been used. Considering that the differences between the two are not obvious, we can use Z. jujuba and Z. jujuba var. inemmis as the origins of Dazao. The germplasm resources of Jujubae Fructus are rich, which are distributed all over the country. Qingzhou (now Shandong), Jinzhou (now Shanxi) Jiangzhou (now Shanxi), Puzhou (now Shanxi) have been recorded as authentic producing areas of Jujubae Fructus in the past dynasties, especially in Shandong. At the beginning of the 21st century, the planting of Jujubae Fructus in Xinjiang gradually developed, and now has a high market recognition, becoming an emerging production area of high-quality samples. Harvest period of Jujubae Fructus is mostly August in the past dynasties, and this is basically the same as today. The main processing method is simple cleansing and drying. Through textual research, it is suggested that Jujubae Fructus in famous classical formulas should be mainly from Shandong, Shanxi and other traditional high-quality producing areas, the processing method should follow the 2020 edition of Chinese Pharmacopoeia for simple cleansing and drying.

16.
Artigo em Chinês | WPRIM | ID: wpr-940337

RESUMO

Through the combing of ancient books of Chinese herbal medicine in the past dynasties, a textual research of Coptidis Rhizoma involved the name, origin, medicinal parts, producing area, quality evaluation, harvesting and processing methods in famous classical formulas was conducted in this paper. After textual research, the mainstream varieties of Coptidis Rhizoma in the Ranunculaceae family before Tang and Song dynasties were Coptis chinensis and C. chinensis var. brevisepala, after the Ming and Qing dynasties, C. deltoidea, C. teeta and C. omeiensis were gradually praised. In ancient times, the authentic producing area of Coptidis Rhizoma has the characteristics of gradually moving to the west. The eastern Coptidis Rhizoma was highly praised in the early stage, while in the later stage, western Coptidis Rhizoma like chicken feet was highly praised. In the early stage, western Coptidis Rhizoma probably originated from C. chinensis and its genus, while Coptidis Rhizoma like chicken feet was cultivated, and no wild species has been found so far. As Coptidis Rhizoma has mixed use of multiple origins in ancient books of past dynasties, based on the current shortage of market resources in C. teeta and C. deltoidea, there are also endangered and protected plants of C. chinensis var. brevisepala and C. omeiensis, combined with the mainstream medicines and resources of past generations, it is recommended to choose C. chinensis as the base of the formulas. In ancient times, there were many processing methods for Coptidis Rhizoma, such as frying and wine-, ginger-, honey-processed. In the process of developing famous classical formulas, the appropriate processing specifications of Coptidis Rhizoma should be selected based on the original source records and the requirements of the medicinal material.

17.
Artigo em Chinês | WPRIM | ID: wpr-940336

RESUMO

Based on various ancient documents such as materia medica, prescription books, classics and history, combined with relevant research materials in modern times, this paper made a textual research on the name, origin, geoherbalism, harvesting time, processing methods of Chuanxiong Rhizoma, which provides a basis for the development of famous classical formulas containing this herb. According to the textual research, the original name of Chuanxiong is Xiongqiong (芎䓖), which was first recorded in Shennong Bencaojing , there are many aliases and trade names in the past dynasties. Since the Song dynasty, doctors all take Xiongqiong produced in Sichuan as the best medicine, so they take Chuanxiong as the rectification of name. In the early stage, the origin of Chuanxiong Rhizoma was relatively complicated, and the main origin was Ligusticum chuanxiong, which was a cultivated and domesticated species of Ligusticum. However, wild related plants of Ligusticum are still used as medicine. After the Ming dynasty, new cultivated varieties appeared in various places, such as Jiangxi L. sinense cv. Fuxiong, which gradually turned to self-production and self-marketing after the Republic of China. After several changes in the authentic producing area of Chuanxiong Rhizoma, Tianshui in Gansu province was highly praised in the Tang dynasty, and Dujiangyan in Sichuan province was the best place in the Song dynasty and later dynasties. Chuanxiong Rhizoma has been widely used in the past dynasties as raw products, and it has also been processed with excipients. For example, wine-processed products can enhance the effect of promoting blood circulation, promoting Qi circulation and relieving pain. There are other processing methods such as stir-frying and vinegar processing. Chuanxiong Rhizoma in the famous classical formulas can be selected according to this research conclusion.

18.
Artigo em Chinês | WPRIM | ID: wpr-940334

RESUMO

By consulting the ancient herbal and medical books, combined with modern literature, the name, origin, geoherbalism, harvesting and processing changes of Bambusae Caulis in Taenias in famous classical formulas were sorted out. According to the research, ancient doctors only approved three kinds of bamboo medicinal materials, namely, Jinzhu (䈽竹), Kuzhu (苦竹) and Danzhu (淡竹), and took bamboo leaves, made Bambusae Caulis in Taenias and Zhuli (竹沥) for medicine. Bamboo medicinal materials with different origins have different properties, tastes and effects, after clinical optimization, it is gradually considered that Danzhu is the best source of Bambusae Caulis in Taenias and Zhuli. According to the morphological description of the original plants and the attached drawings, it is considered that the Danzhu in ancient Chinese materia medica should be Phyllostachys nigra var. henonis, which has been included in the 2020 edition of Chinese Pharmacopoeia as one of the genuine sources of Bambusae Caulis in Taenias. Therefore, It is suggested that P. nigra var. henonis can be added as the source of Bambusae Caulis in Taenias in famous classical formulas, and the medicinal part is the dry middle layer of its stem. Ginger-processed can increase the anti emetic effect of Bambusae Caulis in Taenias, and the three formulas involving Bambusae Caulis in Taenias from The Catalogue of Ancient Famous Classical Formulas (The First Batch) all contain ginger, and the processing method of Bambusae Caulis in Taenias is not marked in the original formula, so it is suggested to use raw products in the three formulas of Jupi Zhurutang, Wendantang and Zhurutang.

19.
Artigo em Chinês | WPRIM | ID: wpr-940333

RESUMO

In this study, name, origin, producing areas, harvesting time and processing methods of ancient Alismatis Rhizoma were systematically researched by consulting the literature of ancient herbs, medical and prescription books, so as to provide a basis for the development of famous classical formula containing this herb. According to textual research, the main base of ancient Alismatis Rhizoma was Alisma plantago-aquatica and A. orientale. A. canaliculatum and A. gramineum and other genera were sometimes used as the source of Alismatis Rhizoma, there was a confusion of medicinal varieties. The earliest producing area of Alismatis Rhizoma was in today's Henan province, and later Hanzhong, Shaanxi province, became the high-quality producing area of Alismatis Rhizoma. Since the Ming dynasty, its production area expanded to Fujian. In the Qing dynasty, Jian'ou in Fujian was the authentic production area of Alismatis Rhizoma. In the period of the Republic of China, Sichuan and Jiangxi were added to the production areas of Alismatis Rhizoma. Based on the research results, it is suggested that the dried tubers of A. orientale from Fujian and Jiangxi or A. plantago-aquatica from Sichuan should be used in the famous classical formulas. In ancient times, Alismatis Rhizoma was processed by wine, but most of the standards and specifications in modern times are no longer included the processing specifications of Alismatis Rhizoma with wine. Although salt-processed Alismatis Rhizoma is commonly used in modern times, it didn't become one of the main processing methods until the Qing dynasty. According to the relevant national documents, it is suggested that Alismatis Rhizoma without clear processing requirements in famous classical formulas should be used as raw products, and the formulas with processing requirements should be selected as processed products such as salt and wine according to the meaning of the formulas.

20.
Artigo em Chinês | WPRIM | ID: wpr-940332

RESUMO

Through consulting the ancient herbal and medical books, combined with the field investigation, the name, origin, collection and processing of Dendrobium medicinal materials were researched, which provided a basis for the development of famous classical formulas containing this kind of herbs. Due to the wide distribution of D. officinale, the Dendrobium species represented by D. officinale and D. huoshanense, which are short, fleshy and rich in mucus, should be the most mainstream of Dendrobium medicinal materials in previous dynasties. Compared with Shihu, Muhu with loose texture, long and hollow is born on trees. According to the characteristic description, it should be D. nobile, D. fimbriatum and so on, of which D. nobile was the mainstream. The Chinese meaning of Jinchai was confused in the past dynasties, so it was not suitable to be treated as a plant name. The production areas of Dendrobium medicinal materials in the past dynasties have changed with the discovery of varieties, artificial cultivation and other factors. Lu'an, Anhui province, was the earliest recorded in the Han and Wei dynasties. Since the Tang and Song dynasties, it had been extended to Guangdong and Guangxi, and it was considered that "Dendrobii Caulis in Guangnan was the best". In the Ming dynasty, Sichuan and Zhejiang products were highly praised, and in the Qing dynasty, Huoshan products were highly praised. Dendrobium medicinal materials had been used as medicine by stems in all dynasties. The medicinal materials were divided into fresh products and dry products. The fresh products can be used immediately after removing the sediment from the roots. The dry products need further processing, most of them used wine as auxiliary materials for steaming, simmer to paste or decoction into medicine. D. officinale and D. huoshanense have special processing specifications since the middle of Qing dynasty, that is, "Fengdou". According to the research results, in Ganluyin, the effect of Dendrobium medicinal materials is mainly heat clearing, and D. nobile with bitter taste can be selected. The main effect of Dendrobium medicinal materials in Dihuang Yinzi is tonic, D. officinale or D. huoshanense can be selected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA