RESUMO
The diverse immunomodulatory effects of vitamin D are increasingly being recognized. However, the ability of oral vitamin D to modulate acute inflammation in vivo has not been established in humans. In a double-blinded, placebo-controlled interventional trial, 20 healthy adults were randomized to receive either placebo or a high dose of vitamin D3 (cholecalciferol) one hour after experimental sunburn induced by an erythemogenic dose of UVR. Compared with placebo, participants receiving vitamin D3 (200,000 international units) demonstrated reduced expression of proinflammatory mediators tumor necrosis factor-α (P = 0.04) and inducible nitric oxide synthase (P = 0.02) in skin biopsy specimens 48 hours after experimental sunburn. A blinded, unsupervised hierarchical clustering of participants based on global gene expression profiles revealed that participants with significantly higher serum vitamin D3 levels after treatment (P = 0.007) demonstrated increased skin expression of the anti-inflammatory mediator arginase-1 (P = 0.005), and a sustained reduction in skin redness (P = 0.02), correlating with significant expression of genes related to skin barrier repair. In contrast, participants with lower serum vitamin D3 levels had significant expression of proinflammatory genes. Together the data may have broad implications for the immunotherapeutic properties of vitamin D in skin homeostasis, and implicate arginase-1 upregulation as a previously unreported mechanism by which vitamin D exerts anti-inflammatory effects in humans.
Assuntos
Colecalciferol/administração & dosagem , Inflamação/tratamento farmacológico , Queimadura Solar/tratamento farmacológico , Administração Oral , Adulto , Colecalciferol/farmacocinética , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Inflamação/sangue , Inflamação/diagnóstico , Masculino , Pessoa de Meia-Idade , Pele/patologia , Pele/efeitos da radiação , Queimadura Solar/sangue , Queimadura Solar/diagnóstico , Fatores de Tempo , Resultado do Tratamento , Vitaminas/administração & dosagem , Vitaminas/farmacocinética , Adulto JovemRESUMO
The use of sulfur mustard (SM) as a chemical weapon for warfare has once again assumed center stage, endangering civilian and the military safety. SM causes rapid local skin vesication and late-onset systemic toxicity. Most studies on SM rely on obtaining tissue and blood for characterizing burn pathogenesis and assessment of systemic pathology, respectively. However the present study focuses on developing a non-invasive method to predict mortality from high dose skin SM exposure. We demonstrate that exposure to SM leads to a dose dependent increase in wound area size on the dorsal surface of mice that is accompanied by a progressive loss in body weight loss, blood cytopenia, bone marrow destruction, and death. Thus our model utilizes local skin destruction and systemic outcome measures as variables to predict mortality in a novel skin-based model of tissue injury. Based on our recent work using vitamin D (25(OH)D) as an intervention to treat toxicity from SM-related compounds, we explored the use of 25(OH)D in mitigating the toxic effects of SM. Here we show that 25(OH)D offers protection against SM and is the first known demonstration of an intervention that prevents SM-induced mortality. Furthermore, 25(OH)D represents a safe, novel, and readily translatable potential countermeasure following mass toxic exposure.