Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e28078, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533072

RESUMO

Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.

2.
F1000Res ; 11: 1541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761838

RESUMO

The Madagascar periwinkle, Catharanthus roseus, belongs to the Apocynaceae family. This medicinal plant, endemic to Madagascar, produces many important drugs including the monoterpene indole alkaloids (MIA) vincristine and vinblastine used to treat cancer worldwide. Here, we provide a new version of the C. roseus genome sequence obtained through the combination of Oxford Nanopore Technologies long-reads and Illumina short-reads. This more contiguous assembly consists of 173 scaffolds with a total length of 581.128 Mb and an N50 of 12.241 Mb. Using publicly available RNAseq data, 21,061 protein coding genes were predicted and functionally annotated. A total of 42.87% of the genome was annotated as transposable elements, most of them being long-terminal repeats. Together with the increasing access to MIA-producing plant genomes, this updated version should ease evolutionary studies leading to a better understanding of MIA biosynthetic pathway evolution.


Assuntos
Catharanthus , Plantas Medicinais , Catharanthus/genética , Catharanthus/metabolismo , Genoma de Planta , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
3.
Drug Metab Dispos ; 48(10): 1104-1112, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32601103

RESUMO

There are many gaps in scientific knowledge about the clinical significance of pharmacokinetic natural product-drug interactions (NPDIs) in which the natural product (NP) is the precipitant and a conventional drug is the object. The National Center for Complimentary and Integrative Health created the Center of Excellence for NPDI Research (NaPDI Center) (www.napdi.org) to provide leadership and guidance on the study of pharmacokinetic NPDIs. A key contribution of the Center is the first user-friendly online repository that stores and links pharmacokinetic NPDI data across chemical characterization, metabolomics analyses, and pharmacokinetic in vitro and clinical experiments (repo.napdi.org). The design is expected to help researchers more easily arrive at a complete understanding of pharmacokinetic NPDI research on a particular NP. The repository will also facilitate multidisciplinary collaborations, as the repository links all of the experimental data for a given NP across the study types. The current work describes the design of the repository, standard operating procedures used to enter data, and pharmacokinetic NPDI data that have been entered to date. To illustrate the usefulness of the NaPDI Center repository, more details on two high-priority NPs, cannabis and kratom, are provided as case studies. SIGNIFICANCE STATEMENT: The data and knowledge resulting from natural product-drug interaction (NPDI) studies is distributed across a variety of information sources, rendering difficulties to find, access, and reuse. The Center of Excellence for NPDI Research addressed these difficulties by developing the first user-friendly online repository that stores data from in vitro and clinical pharmacokinetic NPDI experiments and links them with study data from chemical characterization and metabolomics analyses of natural products that are also stored in the repository.


Assuntos
Produtos Biológicos/farmacocinética , Bases de Dados de Produtos Farmacêuticos , Interações Medicamentosas , Medicamentos sob Prescrição/farmacocinética , Produtos Biológicos/química , Química Farmacêutica , Metabolômica , Medicamentos sob Prescrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA