Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetes ; 61(11): 2743-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22851577

RESUMO

Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.


Assuntos
Exercício Físico , Emulsões Gordurosas Intravenosas/efeitos adversos , Proteínas Ativadoras de GTPase/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Fosfolipídeos/efeitos adversos , Transdução de Sinais , Óleo de Soja/efeitos adversos , Adulto , Emulsões/efeitos adversos , Glucose/administração & dosagem , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Insulina Regular de Porco , Ácido Láctico/metabolismo , Perna (Membro) , Masculino , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Diabetes ; 60(1): 64-73, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956497

RESUMO

OBJECTIVE: We have previously shown that overnight fasted women have higher insulin-stimulated whole body and leg glucose uptake despite a higher intramyocellular triacylglycerol concentration than men. Women also express higher muscle mRNA levels of proteins related to lipid metabolism than men. We therefore hypothesized that women would be less prone to lipid-induced insulin resistance. RESEARCH DESIGN AND METHODS: Insulin sensitivity of whole-body and leg glucose disposal was studied in 16 young well-matched healthy men and women infused with intralipid or saline for 7 h. Muscle biopsies were obtained before and during a euglycemic-hyperinsulinemic clamp (1.42 mU · kg⁻¹ · min⁻¹). RESULTS: Intralipid infusion reduced whole-body glucose infusion rate by 26% in women and 38% in men (P < 0.05), and insulin-stimulated leg glucose uptake was reduced significantly less in women (45%) than men (60%) after intralipid infusion. Hepatic glucose production was decreased during the clamp similarly in women and men irrespective of intralipid infusion. Intralipid did not impair insulin or AMPK signaling in muscle and subcutaneous fat, did not cause accumulation of muscle lipid intermediates, and did not impair insulin-stimulated glycogen synthase activity in muscle or increase plasma concentrations of inflammatory cytokines. In vitro glucose transport in giant sarcolemmal vesicles was not decreased by acute exposure to fatty acids. Leg lactate release was increased and respiratory exchange ratio was decreased by intralipid. CONCLUSIONS: Intralipid infusion causes less insulin resistance of muscle glucose uptake in women than in men. This insulin resistance is not due to decreased canonical insulin signaling, accumulation of lipid intermediates, inflammation, or direct inhibition of GLUT activity. Rather, a higher leg lactate release and lower glucose oxidation with intralipid infusion may suggest a metabolic feedback regulation of glucose metabolism.


Assuntos
Resistência à Insulina/fisiologia , Insulina/fisiologia , Lipídeos/farmacologia , Fosfolipídeos/farmacologia , Transdução de Sinais/fisiologia , Óleo de Soja/farmacologia , Triglicerídeos/metabolismo , Adiponectina/sangue , Tecido Adiposo/anatomia & histologia , Adulto , Animais , Metabolismo Basal/fisiologia , Velocidade do Fluxo Sanguíneo , Estatura , Índice de Massa Corporal , Emulsões/farmacologia , Epinefrina/sangue , Estradiol/sangue , Exercício Físico , Jejum , Feminino , Glucose/metabolismo , Técnica Clamp de Glucose , Humanos , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Insulina/sangue , Insulina/farmacologia , Masculino , Músculo Esquelético/citologia , Norepinefrina/sangue , Consumo de Oxigênio , Ratos , Sarcolema/metabolismo , Caracteres Sexuais , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA