Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669790

RESUMO

In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7-23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14-16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7-23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal "dual action" for ß-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Imidazóis/farmacologia , Morfolinas/farmacologia , Sítio Alostérico , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Imidazóis/síntese química , Imidazóis/química , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Morfolinas/síntese química , Morfolinas/química , Solubilidade , Relação Estrutura-Atividade , Água
2.
Respir Res ; 15: 82, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25034539

RESUMO

BACKGROUND: Moxifloxacin is a synthetic antibacterial agent belonging to the fluoroquinolone family. The antimicrobial activity of quinolones against Gram-positive and Gram-negative bacteria is based on their ability to inhibit topoisomerases. Quinolones are described to have immunomodulatory features in addition to their antimicrobial activities. It was the goal of this study to examine whether a short term treatment with moxifloxacin modulates the inflammation during a subsequently induced bacterial infection in an animal model. METHODS: Mice were treated with moxifloxacin or saline for two consecutive days and were subsequently intranasally infected with viable or heat-inactivated bacterial pathogens (Streptococcus pneumoniae, Pseudomonas aeruginosa) for 6 and 24 hours. Measurements of cytokines in the lungs and plasma were performed. Alveolar cells were determined in bronchoalveolar lavage fluits. RESULTS: The inflammation was increased after the inoculation of viable bacteria compared to inactivated bacteria. Numbers of total immune cells and neutrophils and concentrations of inflammatory mediators (e.g. KC, IL-1ß, IL-17A) were significantly reduced in lungs of moxifloxacin-treated mice infected with inactivated and viable bacterial pathogens as compared to infected control mice. Plasma concentrations of inflammatory mediators were significantly reduced in moxifloxacin-treated mice. Immunohistochemistry showed a stronger infiltrate of TNF-α-expressing cells into lungs of saline-treated mice infected with viable P. aeruginosa as compared to moxifloxacin-treated mice. CONCLUSIONS: These data show that in this pneumonia model moxifloxacin has anti-inflammatory properties beyond its antibacterial activity.


Assuntos
Antibacterianos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Imunidade Celular/imunologia , Pulmão/imunologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/imunologia , Animais , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Imunidade Celular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Moxifloxacina , Pneumonia Bacteriana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA