Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8383, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589849

RESUMO

The green synthesis of silver nanoparticles (AgNPs) and their applications have attracted many researchers as the AgNPs are used effectively in targeting specific tissues and pathogenic microorganisms. The purpose of this study is to synthesize and characterize silver nanoparticles from fully expanded leaves of Eugenia roxburghii DC., as well as to test their effectiveness in inhibiting biofilm production. In this study, at 0.1 mM concentration of silver nitrate (AgNO3), stable AgNPs were synthesized and authenticated by monitoring the color change of the solution from yellow to brown, which was confirmed with spectrophotometric detection of optical density. The crystalline nature of these AgNPs was detected through an X-Ray Diffraction (XRD) pattern. AgNPs were characterized through a high-resolution transmission electron microscope (HR-TEM) to study the morphology and size of the nanoparticles (NPs). A new biological approach was undertaken through the Congo Red Agar (CRA) plate assay by using the synthesized AgNPs against biofilm production. The AgNPs effectively inhibit biofilm formation and the biofilm-producing bacterial colonies. This could be a significant achievement in contending with many dynamic pathogens.


Assuntos
Eugenia , Nanopartículas Metálicas , Antibacterianos/química , Bactérias , Biofilmes , Química Verde , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Difração de Raios X
2.
Sci Rep ; 11(1): 22539, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795371

RESUMO

This study reported the first-ever de novo transcriptome analysis of Operculina turpethum, a high valued endangered medicinal plant, using the Illumina HiSeq 2500 platform. The de novo assembly generated a total of 64,259 unigenes and 20,870 CDS (coding sequence) with a mean length of 449 bp and 571 bp respectively. Further, 20,218 and 16,458 unigenes showed significant similarity with identified proteins of NR (non-redundant) and UniProt database respectively. The homology search carried out against publicly available database found the best match with Ipomoea nil sequences (82.6%). The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified 6538 unigenes functionally assigned to 378 modules with phenylpropanoid biosynthesis pathway as the most enriched among the secondary metabolite biosynthesis pathway followed by terpenoid biosynthesis. A total of 17,444 DEGs were identified among which majority of the DEGs (Differentially Expressed Gene) involved in secondary metabolite biosynthesis were found to be significantly upregulated in stem as compared to root tissues. The qRT-PCR validation of 9 unigenes involved in phenylpropanoid and terpenoid biosynthesis also showed a similar expression pattern. This finding suggests that stem tissues, rather than root tissues, could be used to prevent uprooting of O. turpethum in the wild, paving the way for the plant's effective conservation. Moreover, the study formed a valuable repository of genetic information which will provide a baseline for further molecular research.


Assuntos
Regulação da Expressão Gênica de Plantas , Transcriptoma , Sequência de Bases , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genes de Plantas , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Magnoliopsida/genética , Anotação de Sequência Molecular , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Medicinais/genética , Análise de Sequência de DNA , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA