Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 31(3): 468-489, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35122561

RESUMO

Arsenic contamination of groundwater is a major concern for its usage in crop irrigation in many regions of the world. Arsenic is absorbed by rice plants mainly from arsenic contaminated water during irrigation. It hampers growth and agricultural productivity. The aim of the study was to mitigate the toxic effects of arsenate (As-V) [25 µM, 50 µM, and 75 µM] by silicon (Si) [2 mM] and selenium (Se) [5 µM] amendments on the activity of the TCA cycle, synthesis of γ-aminobutyric acid (GABA) and polyamines (PAs) in rice (Oryza sativa L. cv. MTU-1010) seedlings and to identify which chemical was more potential to combat this threat. As(V) application decreased the activities of tested respiratory enzymes and increased the levels of organic acids (OAs) in the test seedlings. Application of Si with As(V) and Se with As(V) increased the activities of respiratory enzymes and the levels of OAs. The effects were more pronounced during Si amendments. The activities of GABA synthesizing enzymes along with accumulation of GABA were increased under As(V) stress. During joint application of Si with As(V) and Se with As(V) the activity and the level of said parameters were decreased that indicating defensive role of these chemicals to resist As(V) toxicity in rice and Si amendments showed greater potential to reduce As(V) induced damages in the test seedlings. PAs trigger tolerance mechanism against As(V) in plants. PAs such as putrescine, spermidine and spermine were synthesized more during Si and Se amendments in As(V) contaminated rice seedlings to combat the toxic effects of As(V). Si amendments substantially modulated the toxic effects caused by As(V) over Se amendments in the As(V) challenged test seedlings. Thus, in future application of Si enriched fertilizer will be beneficial to grow rice plants with normal vigor in arsenic contaminated soil.


Assuntos
Arsênio , Oryza , Selênio , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Raízes de Plantas , Poliaminas , Plântula , Selênio/farmacologia , Silício/farmacologia , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Ácido gama-Aminobutírico
2.
Environ Sci Pollut Res Int ; 29(13): 19508-19529, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34719761

RESUMO

Arsenic (As) in groundwater severely harms global economic development by affecting growth and productivity of agricultural crops that causes human health risk. The comparative influence of silicon (Si) and selenium (Se) to modulate pigments levels, photosynthetic parameters using LI-6400XT Portable Photosynthesis System and carbohydrate metabolism under arsenate (As-V) stress in rice cv. MTU-1010 were evaluated. As(V) stress significantly decreased chlorophyll-a (32% on an average), chlorophyll-b (58% on an average), total chlorophyll (46% on an average), fluorescence intensity (31% on an average), carotene (39% on an average), xanthophyll (33% on an average), Hill activity (47% on an average) and the photosynthetic parameters, viz. intercellular CO2 concentration (52% on an average), net photosynthesis (54% on an average), transpiration rate (36% on an average) and stomatal conductance (38% on an average) in the test seedlings. As(V) + Si treatments enhanced the stated occurrences more than As(V) + Se treatments in rice seedlings. Sugar contents, viz. reducing (85% on an average) and non-reducing sugar (61% on an average), were increased, but starch content (57% on an average) was decreased in only As(V)-treated rice seedlings. The activities of carbohydrate metabolizing enzymes were increased, while sucrose synthase activity was decreased due to As(V) toxicity in the test seedlings. Co-application of Si and As(V) as well as Se and As(V) showed ameliorative effects on sugar and starch contents along with the activities of carbohydrate metabolizing enzymes, but more potential effect was observed under combined application of Si and As(V) in rice seedlings. Thus, it is an important purpose of this paper to compare the ability of Se and Si to alleviate As(V) toxicity in rice seedlings which will be an effective approach to develop possible strategies in As-contaminated agricultural soil to improve normal growth and productivity of rice plants.


Assuntos
Arsênio , Oryza , Selênio , Arsênio/metabolismo , Metabolismo dos Carboidratos , Cloroplastos/metabolismo , Humanos , Oryza/metabolismo , Fotossíntese , Plântula/metabolismo , Selênio/metabolismo , Silício/metabolismo , Silício/farmacologia
3.
Int J Phytoremediation ; 24(7): 763-777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34579603

RESUMO

This study aims to investigate the potentiality of selenium in modulating arsenic stress in rice seedlings. Arsenate accumulation along with its transformation to arsenite was enhanced in arsenate exposed seedlings. Arsenite induced oxidative stress and severely affected the growth of the seedlings. Arsenate exposure caused an elevation in ascorbate and glutathione levels along with the activities of their metabolizing enzymes viz., ascorbate peroxidase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase. Phytochelatins content was increased under arsenic stress to subdue the toxic effects in the test seedlings. Co-application of arsenate and selenate in rice seedlings manifested pronounced alteration of oxidative stress, antioxidant defense, and thiol metabolism as compared to arsenate treatment only. ANOVA analysis (Tukey's HSD test) demonstrated the relevance of using selenate along with arsenate to maintain the normal growth and development of rice seedlings. Thus, exogenous supplementation of selenium will be a beneficial approach to cultivate rice seedlings in arsenic polluted soil.


Arsenic toxicity in the environment is a global concern, causes chronic signs of poisoning to plants and humans, leads to ecological imbalance. Selenium is known for its antagonistic characteristics and has been found to be effective in combating the adversities of arsenic at low concentrations (5 µM). The present study was performed to explore the comparative responses of rice seedlings during the joint application of selenium and arsenic in terms of growth, generation of oxidative stress, antioxidant defense, and thiol metabolism. Although the molecular basis of arsenic­selenium interaction is widely known a small number of reports were listed about the physio-chemical role of selenium against arsenic stress. Thus, we investigated the influence of selenium to alleviate arsenic-induced toxic effects by modulating the activities of antioxidant enzymes and reducing the levels of oxidative stress markers. It has been noted that selenium regulates thiol metabolism which is known to play a key role in growth preservation by restriction of arsenic translocation. The outcome from the study would be useful in field trials for sustainable agriculture in arsenic-contaminated soil.


Assuntos
Arsênio , Arsenitos , Oryza , Selênio , Antioxidantes/metabolismo , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/metabolismo , Arsênio/toxicidade , Arsenitos/metabolismo , Arsenitos/toxicidade , Biodegradação Ambiental , Glutationa/metabolismo , Glutationa/farmacologia , Oryza/metabolismo , Estresse Oxidativo , Plântula , Ácido Selênico/metabolismo , Ácido Selênico/farmacologia , Selênio/metabolismo , Selênio/farmacologia , Compostos de Sulfidrila/metabolismo
4.
Plant Physiol Biochem ; 166: 41-52, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34090120

RESUMO

Polyamines (PA) have multifarious roles in plant-environment interaction and stress responses. In conjunction with GABA shunt, they regulate induction of tolerance under salinity stress in plants. Here, we tested the hypothesis that silicon improves salt tolerance through mediating vital metabolic pathways rather than acting as a mere mechanical barrier. Seedlings of two rice (Oryza sativa L.) cultivars MTU 1010 (salt-sensitive) & Nonabokra (salt-tolerant) growing in hydroponic culture were treated with NaCl (0, 25, 50 & 100 mM) combined with or without Si (2 mM). NaCl stress enhanced PA synthesizing enzymes activity and PA production in salt tolerant cultivar Nonabokra, whereas in the sensitive cultivar, MTU 1010 both declined. Enhanced activities of GABA synthesizing enzymes along with a decline in the activities of GABA degrading enzymes under NaCl exposure led to GABA accumulation in both the cultivars. The interactive effects of silicon and NaCl also induced the activities of the enzymes related to polyamine biosynthesis and inhibited polyamine degrading enzymes that enhanced PA contents in the cultivars. Supplemental Si decreased endogenous GABA levels by modulating GABA metabolising enzymes under NaCl stress. On the basis of all tested parameters cv. MTU 1010 was proven to be more responsive towards silicon application than cv. Nonabokra. Such study of silicon-induced polyamine accretion and reduced GABA accumulation may lower oxidative damage in rice cultivars under NaCl stress and thereby form a successful strategy to boost tolerance.


Assuntos
Oryza , Tolerância ao Sal , Poliaminas , Silício/farmacologia , Ácido gama-Aminobutírico
5.
Environ Sci Pollut Res Int ; 27(36): 45209-45224, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32779070

RESUMO

A hydroponic experiment was conducted to establish the response of exogenous silicon [Si] in alleviating arsenate [As (V)] prompted alterations on antioxidant enzyme activities and thiol metabolism in wheat (Triticum aestivum L. cv PBW 343) seedlings. Objective of the work was to validate the hypothesis whether silicate may alleviate arsenate-provoked oxidative stress in wheat through diverse metabolic pathways with an endeavor to improve food safety and health. Arsenate treatment significantly enhanced oxidative stress and was associated with modifications in non-enzymatic and enzymatic antioxidants. The activities of arsenate reductase [AR] and the enzymes related to thiol metabolism revealed dose-dependent enhancements with increase in arsenate along with enhanced production of phytochelatins [PCs] in the cultivar. Simultaneous supplementations of silicate with arsenate in the nutrient formulation reduced arsenate uptake along with arsenate reductase activity and consequently lowered arsenite [As (III)] accumulation. The antioxidative defense was upregulated and phytochelatin production was lowered causing an appreciable revival from the arsenate-imposed consequences that eventually augmented growth.


Assuntos
Arsênio , Plântula , Antioxidantes , Estresse Oxidativo , Silício , Compostos de Sulfidrila , Triticum
6.
Environ Sci Pollut Res Int ; 26(13): 13630-13648, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30919191

RESUMO

The objective of the present investigation was to consider the effectiveness of exogenous silicate supplementation in reviving the arsenate imposed alterations on pigment content, Hill activity, photosynthetic parameters, sugar metabolism, polyamine, and ion contents in wheat (Triticum aestivum L. cv. PBW-343) seedlings. Experiments were conducted under different levels of arsenate (0, 25 µM, 50 µM, and 100 µM) in combination with silicate (0, 5 mM) in a hydroponic environment with modified Hoagland's solution for 21 days to determine the ameliorative role of silicon (Si). Arsenate exposure led to a decline in chlorophyll content by 28% and Hill activity by 30% on an average along with photosynthetic parameters. Activity of starch phosphorylase increased causing a subsequent decrease in starch contents by 26%. Degradation of starch enhanced sugar contents by 61% in the test cultivar. Dose-dependant increments in the activities of carbohydrate metabolizing enzymes viz., sucrose synthase, sucrose phosphate synthase, and acid invertase were also noted. Putrescine content was significantly enhanced along with a consequent decline in spermidine and spermine contents. The macro- and micronutrient contents declined proportionally with arsenate imposition. Conversely, silicate amendments irrespective of all arsenate concentrations brought about considerable alterations in all parameters tested with respect to arsenate treatment alone. Marked improvement in pigment content and Hill activity also improved the gas exchange parameters. Soluble sugar contents decreased and starch contents were enhanced. Increase in polyamine contents improved the ionic balance in the test cultivar as well. This study highlights the potentiality of silicon in ameliorating the ecotoxicological risks associated with arsenic pollution and the probable ability of silicon to offer an approach in mitigating arsenate-induced stress leading to restoration of growth and metabolism in wheat seedlings.


Assuntos
Arsênio/metabolismo , Clorofila/metabolismo , Glucosiltransferases/metabolismo , Hidroponia/métodos , Poliaminas/metabolismo , Plântula/metabolismo , Silício/química , Açúcares/metabolismo , Triticum/crescimento & desenvolvimento , beta-Frutofuranosidase/metabolismo , Arsênio/química , Metabolismo dos Carboidratos , Clorofila/química , Glucosiltransferases/química , Fotossíntese , Poliaminas/química , Plântula/química , Silício/farmacologia , Açúcares/química , beta-Frutofuranosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA