Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 68(37): 9993-10002, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32838526

RESUMO

We investigated the effect of a phytoestrogen, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD), from Curcuma comosa Roxb. (Zingiberaceae family) on the adipogenic differentiation of mesenchymal progenitors, human bone marrow-derived mesenchymal stem cells (hBMSCs). DPHD inhibited adipocyte differentiation of hBMSCs by suppressing the expression of genes involved in adipogenesis. DPHD at concentrations of 0.1, 1, and 10 µM significantly decreased triglyceride accumulation in hBMSCs to 7.1 ± 0.2, 6.3 ± 0.4, and 4.9 ± 0.2 mg/dL, respectively, compared to the nontreated control (10.1 ± 0.9 mg/dL) (p < 0.01). Based on gene expression profiling, DPHD increased the expression of several genes involved in the Wnt/ß-catenin signaling pathway, a negative regulator of adipocyte differentiation in hBMSCs. DPHD also increased the levels of essential signaling proteins which are extracellular signal-regulated kinases 1 and 2 (ERK1/2) and glycogen synthase kinase 3 beta (GSK-3ß) that link estrogen receptor (ER) signaling to Wnt/ß-catenin signaling. In conclusion, DPHD exhibited the anti-adipogenic effect in hBMSCs by suppression of adipogenic markers in hBMSCs through the activation of ER and Wnt/ß catenin signaling pathways. This finding suggests the potential role of DPHD in preventing bone marrow adiposity which is one of the major factors that exacerbates osteoporosis in postmenopause.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Curcuma/química , Diarileptanoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fitoestrógenos/farmacologia , Extratos Vegetais/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diarileptanoides/química , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fitoestrógenos/química , Extratos Vegetais/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Triglicerídeos/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
2.
JBMR Plus ; 2(4): 217-226, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30123862

RESUMO

Production of sphingosine-1-phosphate (S1P) is linked to 17ß-estradiol (E2) activity in many estrogen-responsive cells; in bone development, the role of S1P is unclear. We studied effects of S1P on proliferation and differentiation of human osteoblasts (hOB). Ten nM E2, 1 µM S1P, or 1 µM of the S1P receptor 1 (S1PR1) agonist SEW2871 increased hOB proliferation at 24 hours. S1PR 1, 2, and 3 mRNAs are expressed by hOB but not S1PR4 or S1PR5. Expression of S1PR2 was increased at 7 and 14 days of differentiation, in correspondence with osteoblast-related mRNAs. Expression of S1PR1 was increased by E2 or S1P in proliferating hOB, whereas S1PR2 mRNA was unaffected in proliferating cells; S1PR3 was not affected by E2 or S1P. Inhibiting sphingosine kinase (SPHK) activity with sphingosine kinase inhibitor (Ski) greatly reduced the E2 proliferative effect. Both E2 and S1P increased SPHK mRNA at 24 hours in hOB. S1P promoted osteoblast proliferation via activating MAP kinase activity. Either E2 or S1P increased S1P synthesis in a fluorescent S1P assay. Interaction of E2 and S1P signaling was indicated by upregulation of E2 receptor mRNA after S1P treatment. E2 and S1P also promoted alkaline phosphatase expression. During osteoblast differentiation, S1P increased bone-specific mRNAs, similarly to the effects of E2. However, E2 and S1P showed differences in the activation of some osteoblast pathways. Pathway analysis by gene expression arrays was consistent with regulation of pathways of osteoblast differentiation; collagen and cell adhesion proteins centered on Rho/Rac small GTPase signaling and Map kinase or signal transducer and activator of transcription (Stat) intermediates. Transcriptional activation also included significant increases in superoxide dismutase 1 and 2 transcription by either S1P or E2. We demonstrate that the SPHK system is a co-mediator for osteoblast proliferation and differentiation, which is mainly, but not entirely, complementary to E2, whose effects are mediated by S1PR1 and S1PR2.

3.
J Cell Biochem ; 115(1): 62-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23904193

RESUMO

Consumption of trans-unsaturated fatty acids promotes atherosclerosis, but whether degradation of fats in macrophages is altered by trans-unsaturated fatty acids is unknown. We compared the metabolism of oleate (C18:1Δ9-10 cis; (Z)-octadec-9-enoate), elaidate (C18:Δ9-10 trans; (E)-octadec-9-enoate), and stearate (C18:0, octadecanoate) in adherent peripheral human macrophages. Metabolism was followed by measurement of acylcarnitines in cell supernatants by MS/MS, determination of cellular fatty acid content by GC/MS, and assessment of ß-oxidation rates using radiolabeled fatty acids. Cells incubated for 44 h in 100 µM elaidate accumulated more unsaturated fatty acids, including both longer- and shorter-chain, and had reduced C18:0 relative to those incubated with oleate or stearate. Both C12:1 and C18:1 acylcarnitines accumulated in supernatants of macrophages exposed to trans fats. These results suggested ß-oxidation inhibition one reaction proximal to the trans bond. Comparison of [1-(14)C]oleate to [1-(14)C]elaidate catabolism showed that elaidate completed the first round of fatty acid ß-oxidation at rates comparable to oleate. Yet, in competitive ß-oxidation assays with [9,10-(3)H]oleate, tritium release rate decreased when unlabeled oleate was replaced by the same quantity of elaidate. These data show specific inhibition of monoenoic fat catabolism by elaidate that is not shared by other atherogenic fats.


Assuntos
Macrófagos/metabolismo , Ácido Oleico/farmacologia , Carnitina/análogos & derivados , Carnitina/análise , Carnitina/metabolismo , Células Cultivadas , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Ácido Oleico/química , Ácido Oleico/metabolismo , Ácidos Oleicos , Oxirredução/efeitos dos fármacos , Óleos de Plantas/farmacologia , Estearatos/metabolismo , Estearatos/farmacologia , Espectrometria de Massas em Tandem
4.
Phytomedicine ; 20(8-9): 676-82, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23557993

RESUMO

Curcuma comosa Roxb. is ginger-family plant used to relieve menopausal symptoms. Previous work showed that C. comosa extracts protect mice from ovariectomy-induced osteopenia with minimal effects on reproductive organs, and identified the diarylheptanoid (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD) as the major active component of C. comosa rhizomes. At 1-10µM, DPHD increased differentiation in transformed mouse osteoblasts, but the effect of DPHD on normal bone cells was unknown. We examined the concentration dependency and mechanism of action of DPHD relative to 17ß-estradiol in nontransformed human osteoblasts (h-OB). The h-OB were 10-100 fold more sensitive to DPHD than transformed osteoblasts: DPHD increased h-OB proliferation at 10nM and, at 100nM, activated MAP kinase signaling within 30 min. In long-term differentiation assays, responses of h-OB to DPHD were significant at 10nM, and optimal response in most cases was at 100 nM. At 7-21 days, DPHD accelerated osteoblast differentiation, indicated by alkaline phosphatase activity and osteoblast-specific mRNA production. Effects of DPHD were eliminated by the estrogen receptor antagonist ICI182780. During differentiation, DPHD promoted early expression of osteoblast transcription factors, RUNX2 and osterix. Subsequently, DPHD accelerated production of bone structural genes, including COL1A1 and osteocalcin comparably to 17ß-estradiol. In h-OB, DPHD increased the osteoprotegerin to RANKL ratio and supported mineralization more efficiently than 10nM 17ß-estradiol. We conclude that DPHD promotes human osteoblast function in vitro effectively at nanomolar concentrations, making it a promising compound to protect bone in menopausal women.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcuma/química , Osteoblastos/efeitos dos fármacos , Fitoestrógenos/farmacologia , Extratos Vegetais/farmacologia , Diarileptanoides/química , Diarileptanoides/metabolismo , Diarileptanoides/farmacologia , Estradiol/química , Estradiol/farmacologia , Feminino , Heptanol/análogos & derivados , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Menopausa/efeitos dos fármacos , Osteocalcina/metabolismo , Osteocalcina/farmacologia , Osteoporose/tratamento farmacológico , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Fitoestrógenos/química , Fitoestrógenos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , Rizoma/química
5.
PLoS One ; 7(10): e47058, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056580

RESUMO

Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, we show that the ingestion of vitamin C prevents the low-turnover bone loss following ovariectomy in mice. We show that this prevention in areal bone mineral density and micro-CT parameters results from the stimulation of bone formation, demonstrable in vivo by histomorphometry, bone marker measurements, and quantitative PCR. Notably, the reductions in the bone formation rate, plasma osteocalcin levels, and ex vivo osteoblast gene expression 8 weeks post-ovariectomy are all returned to levels of sham-operated controls. The study establishes vitamin C as a skeletal anabolic agent.


Assuntos
Ácido Ascórbico/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/diagnóstico por imagem , Osteoporose/prevenção & controle , Ovariectomia , Radiografia
6.
J Biol Chem ; 287(52): 43312-21, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23109343

RESUMO

Bone formation requires synthesis, secretion, and mineralization of matrix. Deficiencies in these processes produce bone defects. The absence of the PDZ domain protein Na(+)/H(+) exchange regulatory factor 1 (NHERF1) in mice, or its mutation in humans, causes osteomalacia believed to reflect renal phosphate wasting. We show that NHERF1 is expressed by mineralizing osteoblasts and organizes Na(+)/H(+) exchangers (NHEs) and the PTH receptor. NHERF1-null mice display reduced bone formation and wide mineralizing fronts despite elimination of phosphate wasting by dietary supplementation. Bone mass was normal, reflecting coordinated reduction of bone resorption and formation. NHERF1-null bone had decreased strength, consistent with compromised matrix quality. Mesenchymal stem cells from NHERF1-null mice showed limited osteoblast differentiation but enhanced adipocyte differentiation. PTH signaling and Na(+)/H(+) exchange were dysregulated in these cells. Osteoclast differentiation from monocytes was unaffected. Thus, NHERF1 is required for normal osteoblast differentiation and matrix synthesis. In its absence, compensatory mechanisms maintain bone mass, but bone strength is reduced.


Assuntos
Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Matriz Óssea/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Mutantes , Osteoblastos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Fosfoproteínas/genética , Trocadores de Sódio-Hidrogênio/genética
7.
Curr Opin Endocrinol Diabetes Obes ; 16(6): 423-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19816170

RESUMO

PURPOSE OF REVIEW: Embedded within textbooks for decades is the hard fact that releasing hormones from the anterior pituitary, namely, follicle-stimulating hormone, thyroid-stimulating hormone and adrenocorticotropic hormone, stimulate master hormone secretion from target endocrine organs. We propose a paradigm shift in endocrine physiology, which is that these hormones act by design on bone directly, also now considered an endocrine organ. RECENT FINDINGS: Complementary investigations using mouse genetic and cell biological approaches reveal that follicle-stimulating hormone and thyroid-stimulating hormone act on bone cells directly to regulate bone remodeling and bone mass. Thyroid-stimulating hormone inhibits bone remodeling, whereas follicle-stimulating hormone stimulates it. We also find that the posterior pituitary hormone oxytocin is anabolic to the skeleton. SUMMARY: An ambitious extrapolation is that a plurality of pituitary hormones acts in concert as part of a 'pituitary-bone' axis to regulate skeletal integrity in health and disease. When dysregulated master hormone levels during hypogonadism and hyperthyroidism cause altered pituitary hormone secretion through hypothalamic feedback, the latter hormones contribute to the skeletal loss.


Assuntos
Osso e Ossos/fisiologia , Sistema Endócrino/fisiologia , Hormônios Hipofisários/fisiologia , Animais , Densidade Óssea , Remodelação Óssea , Osso e Ossos/fisiopatologia , Sistema Endócrino/fisiopatologia , Humanos , Hormônios Hipofisários/deficiência
8.
Connect Tissue Res ; 47(2): 67-76, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16754512

RESUMO

To better understand the potential use of fetal marrow stromal cells (MSCs) in bone tissue engineering, we compared the ability of these cells with those of adult MSCs with respect to osteoblasts differentiation in the presence or absence of glucocorticoids. Cells were grown for 3-4 weeks in basal medium or supplemented with 100 nM dexamethasone (DEX, a synthetic glucocorticoid analog) or with 50 microM L-ascorbate and 10 mM glycerol-2-phosphate (AS+GP) or with AS+GP+DEX. At various time points in culture, the following parameters were compared between fetal and adult MSCs: cell morphology, cell proliferation, alkaline phosphatase activity, calcium (45Ca) uptake, von Kossa staining, and glucocorticoids receptor expression were analyzed. Compared with adult MSCs, fetal cells showed a less dramatic change to cuboidal morphology in DEX-containing media. Fetal MSCs in all media conditions showed higher proliferation rates and lower alkaline phosphatase activities (p < 0.001) than adult cells. Both fetal and adult MSCs responded similarly in DEX-containing media with respect to suppressing cell proliferation, stimulating alkaline phosphatase activity, and consistently accumulating calcium (usually higher in fetal cells) with subsequent formation of mineralized matrix when compared with cells cultured in AS+GP. Our findings further implicate the requirement of glucocorticoids in osteogenesis. In conclusion, compared with adult MSCs, fetal cells showed greater ability in sustaining cell proliferation and calcium uptake suggesting that they may be useful for bone tissue repair.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Osteogênese/efeitos dos fármacos , Células Estromais/citologia , Adolescente , Adulto , Idoso , Fosfatase Alcalina/metabolismo , Ácido Ascórbico/farmacologia , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Combinação de Medicamentos , Feminino , Feto/citologia , Glicerofosfatos/farmacologia , Humanos , Masculino , Células Estromais/metabolismo
9.
J Biol Chem ; 280(14): 13720-7, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15644335

RESUMO

We studied estrogen effects on osteoclastic differentiation using RAW264.7, a murine monocytic cell line. Differentiation, in response to RANKL and colony-stimulating factor 1, was evaluated while varying estrogen receptor (ER) stimulation by estradiol or nonsteroidal ER agonists was performed. The RAW264.7 cells were found to express ERalpha but not ERbeta. In contrast to RANKL, which decreased ERalpha expression and induced osteoclast differentiation, 10 nm estradiol, 3 microm genistein, or 3 microm daidzein all increased ERalpha expression, stimulated cell proliferation, and decreased multinucleation, with the effects of estrogen > or = daidzein > genistein. However, no estrogen agonist reduced RANKL stimulation of osteoclast differentiation markers or its down-regulation of ERalpha expression by more than approximately 50%. Genistein is also an Src kinase antagonist in vitro, but it did not decrease Src phosphorylation in RAW264.7 cells relative to other estrogen agonists. However, both phytoestrogens and estrogen inhibited RANKL-induced IkappaB degradation and NF-kappaB nuclear localization with the same relative potency as seen in proliferation and differentiation assays. This study demonstrates, for the first time, the direct effects of estrogen on osteoclast precursor differentiation and shows that, in addition to effecting osteoblasts, estrogen may protect bone by reducing osteoclast production. Genistein, which activates ERs selectively, inhibited osteoclastogenesis less effectively than the nonselective phytoestrogen daidzein, which effectively reproduced effects of estrogen.


Assuntos
Proteínas de Transporte/farmacologia , Diferenciação Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Glicoproteínas de Membrana/farmacologia , Osteoclastos/efeitos dos fármacos , Fitoestrógenos/farmacologia , Animais , Apoptose/fisiologia , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genisteína/farmacologia , Isoflavonas/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteoclastos/fisiologia , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA