Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12144, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108508

RESUMO

In bone regeneration induced by the combination of mesenchymal stromal cells (MSCs) and calcium-phosphate (CaP) materials, osteoclasts emerge as a pivotal cell linking inflammation and bone formation. Favorable outcomes are observed despite short-term engraftments of implanted MSCs, highlighting their major paracrine function and the possible implication of cell death in modulating their secretions. In this work, we focused on the communication from MSCs towards osteoclasts-like cells in vitro. MSCs seeded on a CaP biomaterial or undergoing induced apoptosis produced a conditioned media favoring the development of osteoclasts from human CD14+ monocytes. On the contrary, MSCs' apoptotic secretion inhibited the development of inflammatory multinucleated giant cells formed after IL-4 stimulation. Components of MSCs' secretome before and after apoptotic stress were compared using mass spectrometry-based quantitative proteomics and a complementary immunoassay for major cytokines. CXCR-1 and CXCR-2 ligands, primarily IL-8/CXCL-8 but also the growth-regulated proteins CXCL-1, -2 or -3, were suggested as the major players of MSCs' pro-osteoclastic effect. These findings support the hypothesis that osteoclasts are key players in bone regeneration and suggest that apoptosis plays an important role in MSCs' effectiveness.


Assuntos
Apoptose , Células da Medula Óssea/citologia , Diferenciação Celular , Células Gigantes/patologia , Células-Tronco Mesenquimais/citologia , Osteoclastos/citologia , Osteogênese , Células da Medula Óssea/fisiologia , Proliferação de Células , Citocinas , Células Gigantes/metabolismo , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoclastos/fisiologia
2.
J Bone Miner Res ; 34(12): 2264-2276, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31373726

RESUMO

Spondyloarthritis (SpA) is a common rheumatic disease characterized by enthesis inflammation (enthesitis) and ectopic ossification (enthesophytes). The current pathogenesis model suggests that inflammation and mechanical stress are both strongly involved in SpA pathophysiology. We have previously observed that the levels of sphingosine 1-phosphate (S1P), a bone anabolic molecule, were particularly high in SpA patients' serum compared to healthy donors. Therefore, we wondered how this deregulation was related to SpA molecular mechanisms. Mouse primary osteoblasts, chondrocytes, and tenocytes were used as cell culture models. The sphingosine kinase 1 (Sphk1) gene expression and S1P secretion were significantly enhanced by cyclic stretch in osteoblasts and chondrocytes. Further, TNF-α and IL-17, cytokines implicated in enthesitis, increased Sphk1 mRNA in chondrocytes in an additive manner when combined to stretch. The immunochemistry on mouse ankles showed that sphingosine kinase 1 (SK1) was localized in some chondrocytes; the addition of a pro-inflammatory cocktail augmented Sphk1 expression in cultured ankles. Subsequently, fingolimod was used to block S1P metabolism in cell cultures. It inhibited S1P receptors (S1PRs) signaling and SK1 and SK2 activity in both osteoblasts and chondrocytes. Fingolimod also reduced S1PR-induced activation by SpA patients' synovial fluid (SF), demonstrating that the stimulation of chondrocytes by SFs from SpA patients involves S1P. In addition, when the osteogenic culture medium was supplemented with fingolimod, alkaline phosphatase activity, matrix mineralization, and bone formation markers were significantly reduced in osteoblasts and hypertrophic chondrocytes. Osteogenic differentiation was accompanied by an increase in S1prs mRNA, especially S1P1/3 , but their contribution to S1P-impact on mineralization seemed limited. Our results suggest that S1P might be overproduced in SpA enthesis in response to cytokines and mechanical stress, most likely by chondrocytes. Moreover, S1P could locally favor the abnormal ossification of the enthesis; therefore, blocking the S1P metabolic pathway could be a potential therapeutic approach for the treatment of SpA. © 2019 American Society for Bone and Mineral Research.


Assuntos
Citocinas/farmacologia , Lisofosfolipídeos/biossíntese , Osteogênese , Esfingosina/análogos & derivados , Espondilartrite/patologia , Espondilartrite/fisiopatologia , Estresse Mecânico , Adolescente , Adulto , Idoso , Animais , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Feminino , Cloridrato de Fingolimode/farmacologia , Humanos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/biossíntese , Líquido Sinovial/metabolismo , Tenócitos/efeitos dos fármacos , Tenócitos/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
3.
Transl Res ; 166(6): 627-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26163991

RESUMO

Spondyloarthritis (SpA) is a chronic inflammatory joint disorder that initiates at the enthesis, where tendons attach to bone through a fibrocartilage zone. At late stages, excessive bone apposition appears within the diseased enthesis. Because Wnt5a participates to normal bone formation and appears related to inflammatory processes, we investigated the role of this Wnt growth factor in inflammation-associated ossification in SpA. The concentration of Wnt5a assessed by enzyme-linked immunosorbent assay in synovial fluids of patients with SpA (2.58 ± 0.98 ng/mL) was higher than in osteoarthritic patients (1.33 ± 0.71 ng/mL). In murine primary cultures of tendon cells, chondrocytes, and osteoblasts and in an organotypic model of mouse ankle, we showed that tumor necrosis factor α reversibly diminished Wnt5a expression and secretion, respectively. Wnt5a decreased gene expression of differentiation markers and mineralization in cultured chondrocytes and reduced alkaline phosphatase activity in Achilles tendon enthesis (-14%) and osteocalcin protein levels released by ankle explants (-36%). On the contrary, Wnt5a stimulated ossification markers' expression in cultured osteoblasts and increased the bone volume of the tibial plateau of the cultured explants (+19%). In conclusion, our results suggest that Wnt5a is expressed locally in the joints of patients with SpA. Wnt5a appears more associated with ossification than with inflammation and tends to inhibit mineralization in chondrocytes and enthesis, whereas it seems to favor the ossification process in osteoblasts and bone. Further studies are needed to decipher the opposing effects observed locally in enthesis and systemically in bone in SpA.


Assuntos
Artrite/metabolismo , Osso e Ossos/fisiopatologia , Artropatias/metabolismo , Proteínas Wnt/metabolismo , Animais , Células Cultivadas , Camundongos , Técnicas de Cultura de Órgãos , Líquido Sinovial/metabolismo , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA