Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 302(5): H1031-49, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22058154

RESUMO

Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.


Assuntos
Hipertensão/induzido quimicamente , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Cardiotônicos/farmacologia , Feminino , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Masculino , Camundongos , Ouabaína/sangue , Ouabaína/farmacologia , Gravidez , Ratos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia
2.
J Physiol ; 569(Pt 1): 243-56, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16166162

RESUMO

A key question in hypertension is: How is long-term blood pressure controlled? A clue is that chronic salt retention elevates an endogenous ouabain-like compound (EOLC) and induces salt-dependent hypertension mediated by Na(+)/Ca(2)(+) exchange (NCX). The precise mechanism, however, is unresolved. Here we study blood pressure and isolated small arteries of mice with reduced expression of Na(+) pump alpha1 (alpha1(+/-)) or alpha2 (alpha2(+/-)) catalytic subunits. Both low-dose ouabain (1-100 nm; inhibits only alpha2) and high-dose ouabain (> or =1 microm; inhibits alpha1) elevate myocyte Ca(2)(+) and constrict arteries from alpha1(+/-), as well as alpha2(+/-) and wild-type mice. Nevertheless, only mice with reduced alpha2 Na(+) pump activity (alpha2(+/-)), and not alpha1 (alpha1(+/-)), have elevated blood pressure. Also, isolated, pressurized arteries from alpha2(+/-), but not alpha1(+/-), have increased myogenic tone. Ouabain antagonists (PST 2238 and canrenone) and NCX blockers (SEA0400 and KB-R7943) normalize myogenic tone in ouabain-treated arteries. Only the NCX blockers normalize the elevated myogenic tone in alpha2(+/-) arteries because this tone is ouabain independent. All four agents are known to lower blood pressure in salt-dependent and ouabain-induced hypertension. Thus, chronically reduced alpha2 activity (alpha2(+/-) or chronic ouabain) apparently regulates myogenic tone and long-term blood pressure whereas reduced alpha1 activity (alpha1(+/-)) plays no persistent role: the in vivo changes in blood pressure reflect the in vitro changes in myogenic tone. Accordingly, in salt-dependent hypertension, EOLC probably increases vascular resistance and blood pressure by reducing alpha2 Na(+) pump activity and promoting Ca(2)(+) entry via NCX in myocytes.


Assuntos
Artérias/fisiologia , Pressão Sanguínea/fisiologia , Tono Muscular/fisiologia , Músculo Liso Vascular/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Vasoconstrição/fisiologia , Animais , Homeostase/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidades Proteicas , ATPase Trocadora de Sódio-Potássio/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA