Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286965

RESUMO

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Assuntos
Genoma de Protozoário , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Ilhas Genômicas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNA , Splicing de RNA , Transcriptoma , Tylenchoidea/crescimento & desenvolvimento , Virulência/genética
2.
Mol Ecol ; 24(23): 5842-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26607216

RESUMO

Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen-informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species. We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field-scale resolution. Most fields contain a single mitotype, one-fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying 'pathoscape'. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of 'hybrids'. This study provides a method for accurate, quantitative and high-throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.


Assuntos
Variação Genética , Genética Populacional , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Animais , Código de Barras de DNA Taxonômico , DNA de Helmintos/genética , DNA Mitocondrial/genética , Dados de Sequência Molecular , Doenças das Plantas/parasitologia , Escócia , Solo
3.
BMC Immunol ; 3: 7, 2002 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12098359

RESUMO

BACKGROUND: "Alternatively-activated" macrophages are found in Th2-mediated inflammatory settings such as nematode infection and allergic pulmonary inflammation. Due in part to a lack of markers, these cells have not been well characterized in vivo and their function remains unknown. RESULTS: We have used murine macrophages elicited by nematode infection (NeM(phi)) as a source of in vivo derived alternatively activated macrophages. Using three distinct yet complementary molecular approaches we have established a gene expression profile of alternatively activated macrophages and identified macrophage genes that are regulated in vivo by IL-4. First, genes abundantly expressed were identified by an expressed sequence tag strategy. Second, an array of 1176 known mouse genes was screened for differential expression between NeM(phi) from wild type or IL-4 deficient mice. Third, a subtractive library was screened to identify novel IL-4 dependent macrophage genes. Differential expression was confirmed by real time RT-PCR analysis. CONCLUSIONS: Our data demonstrate that alternatively activated macrophages generated in vivo have a gene expression profile distinct from any macrophage population described to date. Several of the genes we identified, including those most abundantly expressed, have not previously been associated with macrophages and thus this study provides unique new information regarding the phenotype of macrophages found in Th2-mediated, chronic inflammatory settings. Our data also provide additional in vivo evidence for parallels between the inflammatory processes involved in nematode infection and allergy.


Assuntos
Perfilação da Expressão Gênica , Interleucina-4/fisiologia , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Animais , Arginase/genética , Brugia Malayi/crescimento & desenvolvimento , Brugia Malayi/imunologia , Etiquetas de Sequências Expressas , Feminino , Regulação da Expressão Gênica/imunologia , Biblioteca Gênica , Genótipo , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-4/deficiência , Interleucina-4/genética , Interleucina-5/deficiência , Interleucina-5/genética , Interleucina-5/fisiologia , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Neural , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA