Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 16(11): e0010947, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441814

RESUMO

Cryptosporidium spp. are gastrointestinal opportunistic protozoan parasites that infect humans, domestic animals, and wild animals all over the world. Cryptosporidiosis is the second leading infectious diarrheal disease in infants less than 5 years old. Cryptosporidiosis is a common zoonotic disease associated with diarrhea in infants and immunocompromised individuals. Consequently, cryptosporidiosis is considered a serious economic, veterinary, and medical concern. The treatment options for cryptosporidiosis are limited. To address this problem, we screened a natural product library containing 87 compounds of Traditional Chinese Medicines for anti-Cryptosporidium compounds that could serve as novel drug leads and therapeutic targets against C. parvum. To examine the anti-Cryptosporidium activity and half-maximal inhibitory doses (EC50) of these compounds, we performed in vitro assays (Cryptosporidium growth inhibition assay and host cell viability assay) and in vivo experiments in mice. In these assays, the C. parvum HNJ-1 strain was used. Four of the 87 compounds (alisol-A, alisol-B, atropine sulfate, and bufotalin) showed strong anti-Cryptosporidium activity in vitro (EC50 values = 122.9±6.7, 79.58±13.8, 253.5±30.3, and 63.43±18.7 nM, respectively), and minimum host cell cytotoxicity (cell survival > 95%). Furthermore, atropine sulfate (200 mg/kg) and bufotalin (0.1 mg/kg) also showed in vivo inhibitory effects. Our findings demonstrate that atropine sulfate and bufotalin are effective against C. parvum infection both in vitro and in vivo. These compounds may, therefore, represent promising novel anti-Cryptosporidium drug leads for future medications against cryptosporidiosis.


Assuntos
Cryptosporidium , Medicina Tradicional Chinesa , Animais , Pré-Escolar , Humanos , Camundongos
2.
J Appl Physiol (1985) ; 130(1): 26-35, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33119470

RESUMO

Thiamine (vitamin B1) is necessary for energy production, especially in the heart. Recent studies have demonstrated that thiamine supplementation for cardiac diseases is beneficial. However, the detailed mechanisms underlying thiamine-preserved cardiac function have not been elucidated. To this end, we conducted a functional analysis, metabolome analysis, and electron microscopic analysis to unveil the mechanisms of preserved cardiac function through supplementation with thiamine for ischemic cardiac disease. Male Sprague-Dawley rats (around 10 wk old) were used. Following pretreatment with or without thiamine pyrophosphate (TPP; 300 µM), hearts were exposed to ischemia (40 min of global ischemia followed by 60 min of reperfusion). We measured the left ventricle developed pressure (LVDP) throughout the protocol. The LVDP during reperfusion in the TPP-treated heart was significantly higher than that in the untreated heart. Metabolome analysis was performed using capillary electrophoresis-time-of-flight mass spectrometry, and it revealed that the TPP-treated heart retained higher adenosine triphosphate (ATP) levels compared with the untreated heart after ischemia. The metabolic pathway showed that there was a significant increase in fumaric acid and malic acid from the tricarboxylic acid cycle following ischemia. Electron microscope analysis revealed that the mitochondria size in the TPP-treated heart was larger than that in the untreated heart. Mitochondrial fission in the TPP-treated heart was also inhibited, which was confirmed by a decrease in the phosphorylation level of DRP1 (fission related protein). TPP treatment for cardiac ischemia preserved ATP levels probably as a result of maintaining larger mitochondria by inhibiting fission, thereby allowing the TPP-treated heart to preserve contractility performance during reperfusion.NEW & NOTEWORTHY We found that treatment with thiamine can have a protective effect on myocardial ischemia. Thiamine likely mediates mitochondrial fission through the inhibition of DRP1 phosphorylation and the preservation of larger-sized mitochondria and ATP concentration, leading to higher cardiac contractility performance during the subsequent reperfusion state.


Assuntos
Trifosfato de Adenosina , Isquemia Miocárdica , Animais , Isquemia , Masculino , Mitocôndrias Cardíacas , Tamanho Mitocondrial , Ratos , Ratos Sprague-Dawley , Tiamina
3.
Oncotarget ; 7(43): 70437-70446, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27626481

RESUMO

Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development.


Assuntos
Autofagia/efeitos dos fármacos , Frutas/química , Extratos Vegetais/farmacologia , Zanthoxylum/química , Células A549 , Animais , Antracenos/farmacologia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células CACO-2 , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células MCF-7 , Fosforilação/efeitos dos fármacos , Interferência de RNA , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA