Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Brain Sci ; 12(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35326319

RESUMO

Mindfulness training (MT) reduces self-referential processing and promotes interoception, the perception of sensations from inside the body, by increasing one's awareness of and regulating responses to them. The posterior cingulate cortex (PCC) and the insular cortex (INS) are considered hubs for self-referential processing and interoception, respectively. Although MT has been consistently found to decrease PCC, little is known about how MT relates to INS activity. Understanding links between mindfulness and interoception may be particularly important for informing mental health in adolescence, when neuroplasticity and emergence of psychopathology are heightened. We examined INS activity during real-time functional magnetic resonance imaging neurofeedback-augmented mindfulness training (NAMT) targeting the PCC. Healthy adolescents (N = 37; 16 female) completed the NAMT task, including Focus-on-Breath (MT), Describe (self-referential processing), and Rest conditions, across three neurofeedback runs and two non-neurofeedback runs (Observe, Transfer). Regression coefficients estimated from the generalized linear model were extracted from three INS subregions: anterior (aINS), mid (mINS), and posterior (pINS). Mixed model analyses revealed the main effect of run for Focus-on-Breath vs. Describe contrast in aINS [R2 = 0.39] and pINS [R2 = 0.33], but not mINS [R2 = 0.34]. Post hoc analyses revealed greater aINS activity and reduced pINS activity during neurofeedback runs, and such activities were related to lower self-reported life satisfaction and less pain behavior, respectively. These findings revealed the specific involvement of insula subregions in rtfMRI-nf MT.

2.
Cogn Affect Behav Neurosci ; 22(4): 849-867, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292905

RESUMO

Mindfulness training (MT) promotes the development of one's ability to observe and attend to internal and external experiences with objectivity and nonjudgment with evidence to improve psychological well-being. Real-time functional MRI neurofeedback (rtfMRI-nf) is a noninvasive method of modulating activity of a brain region or circuit. The posterior cingulate cortex (PCC) has been hypothesized to be an important hub instantiating a mindful state. This nonrandomized, single-arm study examined the feasibility and tolerability of training typically developing adolescents to self-regulate the posterior cingulate cortex (PCC) using rtfMRI-nf during MT. Thirty-four adolescents (mean age: 15 years; 14 females) completed the neurofeedback augmented mindfulness training task, including Focus-on-Breath (MT), Describe (self-referential thinking), and Rest conditions, across three neurofeedback and two non-neurofeedback runs (Observe, Transfer). Self-report assessments demonstrated the feasibility and tolerability of the task. Neurofeedback runs differed significantly from non-neurofeedback runs for the Focus-on-Breath versus Describe contrast, characterized by decreased activity in the PCC during the Focus-on-Breath condition (z = -2.38 to -6.27). MT neurofeedback neural representation further involved the medial prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, posterior insula, hippocampus, and amygdala. State awareness of physical sensations increased following rtfMRI-nf and was maintained at 1-week follow-up (Cohens' d = 0.69). Findings demonstrate feasibility and tolerability of rtfMRI-nf in healthy adolescents, replicates the role of PCC in MT, and demonstrate a potential neuromodulatory mechanism to leverage and streamline the learning of mindfulness practice. ( ClinicalTrials.gov identifier #NCT04053582; August 12, 2019).


Assuntos
Atenção Plena , Autocontrole , Adolescente , Estudos de Viabilidade , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
3.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
4.
Hum Brain Mapp ; 42(10): 3216-3227, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33835628

RESUMO

Floatation-Reduced Environmental Stimulation Therapy (REST) is a procedure that reduces stimulation of the human nervous system by minimizing sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational, and proprioceptive channels, in addition to minimizing musculoskeletal movement and speech. Initial research has found that Floatation-REST can elicit short-term reductions in anxiety, depression, and pain, yet little is known about the brain networks impacted by the intervention. This study represents the first functional neuroimaging investigation of Floatation-REST, and we utilized a data-driven exploratory analysis to determine whether the intervention leads to altered patterns of resting-state functional connectivity (rsFC). Healthy participants underwent functional magnetic resonance imaging (fMRI) before and after 90 min of Floatation-REST or a control condition that entailed resting supine in a zero-gravity chair for an equivalent amount of time. Multivariate Distance Matrix Regression (MDMR), a statistically-stringent whole-brain searchlight approach, guided subsequent seed-based connectivity analyses of the resting-state fMRI data. MDMR identified peak clusters of rsFC change between the pre- and post-float fMRI, revealing significant decreases in rsFC both within and between posterior hubs of the default-mode network (DMN) and a large swath of cortical tissue encompassing the primary and secondary somatomotor cortices extending into the posterior insula. The control condition, an active form of REST, showed a similar pattern of reduced rsFC. Thus, reduced stimulation of the nervous system appears to be reflected by reduced rsFC within the brain networks most responsible for creating and mapping our sense of self.


Assuntos
Conectoma , Rede de Modo Padrão/fisiologia , Hidroterapia , Córtex Insular/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Privação Sensorial/fisiologia , Córtex Somatossensorial/fisiologia , Adolescente , Adulto , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Córtex Insular/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Adulto Jovem
5.
J Affect Disord ; 283: 229-235, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561804

RESUMO

BACKGROUND: Small hippocampal volume is a prevalent neurostructural abnormality in posttraumatic stress disorder (PTSD). However, whether the hippocampal atrophy is the cause of disease symptoms or a pre-existing risk factor and whether it is a reversible alteration or a permanent trait are unclear. The trait- or state-dependent alteration could also differ among the hippocampal subfields. METHODS: The study examined the longitudinal hippocampal volume changes due to positive emotional training with left amygdala (LA) real-time fMRI neurofeedback (rtfMRI-nf) in combat veterans with PTSD. The participants were trained to increase the neurofeedback signal from LA (experimental group, N = 20) or brain region not involved in emotion processing (control group, N = 9) by recalling a positive autobiographical memory. The pre- and post-training structural MRI brain images were processed with FreeSurfer to evaluate the hippocampal subfield volumes. Hippocampal volumes for healthy controls (N = 43) were also examined to evaluate the baseline abnormality in PTSD. RESULTS: A significant group difference in volume change was found in the left CA1 head region. This region had the most significant volume reduction at the baseline in PTSD. The experimental group showed a significant volume increase, while the control group showed a significant volume decrease in this region. The volume change in the control group negatively correlated with interval days between the scans. LIMITATIONS: A cognitive improvement due to the hippocampal volume increase could not be found with symptom scales. CONCLUSIONS: RtfMRI-nf positive emotional training increased the hippocampus volume among people with PTSD, suggesting that hippocampal atrophy in PTSD is modifiable.


Assuntos
Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos , Tonsila do Cerebelo/diagnóstico por imagem , Emoções , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia
6.
Neuroimage Clin ; 29: 102559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33516062

RESUMO

Real-time fMRI neurofeedback (rtfMRI-nf) left amygdala (LA) training is a promising intervention for major depressive disorder (MDD). We have previously proposed that rtfMRI-nf LA training may reverse depression-associated regional impairments in neuroplasticity and restore information flow within emotion-regulating neural circuits. Inflammatory cytokines as well as the neuroactive metabolites of an immunoregulatory pathway, i.e. the kynurenine pathway (KP), have previously been implicated in neuroplasticity. Therefore, in this proof-of-principle study, we investigated the association between rtfMRI-nf LA training and circulating inflammatory mediators and KP metabolites. Based on our previous work, the primary variable of interest was the ratio of the NMDA-receptor antagonist, kynurenic acid to the NMDA receptor agonist, quinolinic acid (KynA/QA), a putative neuroprotective index. We tested two main hypotheses. i. Whether rtfMRI-nf acutely modulates KynA/QA, and ii. whether baseline KynA/QA predicts response to rtfMRI-nf. Twenty-nine unmedicated participants who met DSM-5 criteria for MDD based on the Mini-International Neuropsychiatric Interview and had current depressive symptoms (Montgomery-Åsberg Depression Rating Scale (MADRS) score > 6) completed two rtfMRI-nf sessions to upregulate LA activity (Visit1 and 2), as well as a follow-up (Visit3) without rtfMRI-nf. All visits occurred at two-week intervals. At all three visits, the MADRS was administered to participants and serum samples for the quantification of inflammatory cytokines and KP metabolites were obtained. First, the longitudinal changes in the MADRS score and immune markers were tested by linear mixed effect model analysis. Further, utilizing a linear regression model, we investigated the relationship between rtfMRI-nf performance and immune markers. After two sessions of rtfMRI-nf, MADRS scores were significantly reduced (t[58] = -4.07, p = 0.009, d = 0.56). Thirteen participants showed a ≥ 25% reduction in the MADRS score (the partial responder group). There was a significant effect of visit (F[2,58] = 3.17, p = 0.05) for the neuroprotective index, KynA to 3-hydroxykynurenine (3-HK), that was driven by a significant increase in KynA/3-HK between Visit1 and Visit3 (t[58] = 2.50, p = 0.03, d = 0.38). A higher baseline level of KynA/QA (ß = 5.23, p = 0.06; rho = 0.49, p = 0.02) was associated with greater ability to upregulate the LA. Finally, for exploratory purposes correlation analyses were performed between the partial responder and the non-responder groups as well as in the whole sample including all KP metabolites and cytokines. In the partial responder group, greater ability to upregulate the LA was correlated with an increase in KynA/QA after rtfMRI-nf (rho = 0.75, p = 0.03). The results are consistent with the possibility that rtfMRI-nf decreases metabolism down the so-called neurotoxic branch of the KP. Nevertheless, non-specific effects cannot be ruled out due to the lack of a sham control. Future, controlled studies are needed to determine whether the increase in KynA/3HK and KynA/QA is specific to rtfMRI-nf or whether it is a non-specific correlate of the resolution of depressive symptoms. Similarly, replication studies are needed to determine whether KynA/QA has clinical utility as a treatment response biomarker.


Assuntos
Transtorno Depressivo Maior , Neurorretroalimentação , Tonsila do Cerebelo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Cinurenina , Imageamento por Ressonância Magnética
7.
Hum Brain Mapp ; 42(4): 922-940, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33169903

RESUMO

Rumination, repetitively thinking about the causes, consequences, and one's negative affect, has been considered as an important factor of depression. The intrusion of ruminative thoughts is not easily controlled, and it may be useful to visualize one's neural activity related to rumination and to use that information to facilitate one's self-control. Real-time fMRI neurofeedback (rtfMRI-nf) enables one to see and regulate the fMRI signal from their own brain. This proof-of concept study utilized connectivity-based rtfMRI-nf (cnf) to normalize brain functional connectivity (FC) associated with rumination. Healthy participants were instructed to brake or decrease FC between the precuneus and the right temporoparietal junction (rTPJ), associated with high levels of rumination, while engaging in a self-referential task. The cnf group (n = 14) showed a linear decrease in the precuneus-rTPJ FC across neurofeedback training (trend [112] = -0.180, 95% confidence interval [CI] -0.330 to -0.031, while the sham group (n = 14) showed a linear increase in the target FC (trend [112] = 0.151, 95% CI 0.017 to 0.299). Although the cnf group showed a greater reduction in state-rumination compared to the sham group after neurofeedback training (p < .05), decoupled precuneus-rTPJ FC did not predict attenuated state-rumination. We did not find any significant aversive effects of rtfMRI-nf in all study participants. These results suggest that cnf has the capacity to influence FC among precuneus and rTPJ of a ruminative brain circuit. This approach can be applied to mood and anxiety patients to determine the clinical benefits of reduction in maladaptive rumination.


Assuntos
Conectoma , Rede Nervosa/fisiologia , Neurorretroalimentação/métodos , Lobo Parietal/fisiologia , Ruminação Cognitiva/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Neurorretroalimentação/fisiologia , Lobo Parietal/diagnóstico por imagem , Estudo de Prova de Conceito , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
8.
Neuroimage Clin ; 28: 102459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33065473

RESUMO

Recently, we reported an emotion self-regulation study (Zotev et al., 2020), in which patients with major depressive disorder (MDD) used simultaneous real-time fMRI and EEG neurofeedback (rtfMRI-EEG-nf) to upregulate two fMRI and two EEG activity measures, relevant to MDD. The target measures included fMRI activities of the left amygdala and left rostral anterior cingulate cortex, and frontal EEG asymmetries in the alpha band (FAA) and high-beta band (FBA). Here we apply the exact low resolution brain electromagnetic tomography (eLORETA) to investigate EEG source activities during the rtfMRI-EEG-nf procedure. The exploratory analyses reveal significant changes in hemispheric lateralities of upper alpha and high-beta current source densities in the prefrontal regions, consistent with upregulation of the FAA and FBA during the rtfMRI-EEG-nf task. Similar laterality changes are observed for current source densities in the amygdala. Prefrontal upper alpha current density changes show significant negative correlations with anhedonia severity. Changes in prefrontal high-beta current density are consistent with reduction in comorbid anxiety. Comparisons with results of previous LORETA studies suggest that the rtfMRI-EEG-nf training is beneficial to MDD patients, and may have the ability to correct functional deficiencies associated with anhedonia and comorbid anxiety in MDD.


Assuntos
Transtorno Depressivo Maior , Neurorretroalimentação , Tonsila do Cerebelo , Eletroencefalografia , Fenômenos Eletromagnéticos , Humanos , Imageamento por Ressonância Magnética
9.
Neuroimage Clin ; 27: 102331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32623140

RESUMO

Simultaneous real-time fMRI and EEG neurofeedback (rtfMRI-EEG-nf) is an emerging neuromodulation approach, that enables simultaneous volitional regulation of both hemodynamic (BOLD fMRI) and electrophysiological (EEG) brain activities. Here we report the first application of rtfMRI-EEG-nf for emotion self-regulation training in patients with major depressive disorder (MDD). In this proof-of-concept study, MDD patients in the experimental group (n = 16) used rtfMRI-EEG-nf during a happy emotion induction task to simultaneously upregulate two fMRI and two EEG activity measures relevant to MDD. The target measures included BOLD activities of the left amygdala (LA) and left rostral anterior cingulate cortex (rACC), and frontal EEG asymmetries in the alpha band (FAA, [7.5-12.5] Hz) and high-beta band (FBA, [21-30] Hz). MDD patients in the control group (n = 8) were provided with sham feedback signals. An advanced procedure for improved real-time EEG-fMRI artifact correction was implemented. The experimental group participants demonstrated significant upregulation of the LA BOLD activity, FAA, and FBA during the rtfMRI-EEG-nf task, as well as significant enhancement in fMRI connectivity between the LA and left rACC. Average individual FAA changes during the rtfMRI-EEG-nf task positively correlated with depression and anhedonia severities, and negatively correlated with after-vs-before changes in depressed mood ratings. Temporal correlations between the FAA and FBA time courses and the LA BOLD activity were significantly enhanced during the rtfMRI-EEG-nf task. The experimental group participants reported significant mood improvements after the training. Our results suggest that the rtfMRI-EEG-nf may have potential for treatment of MDD.


Assuntos
Transtorno Depressivo Maior , Regulação Emocional , Neurorretroalimentação , Transtorno Depressivo Maior/diagnóstico por imagem , Eletroencefalografia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
10.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729652

RESUMO

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Prática Psicológica , Adulto , Humanos , Prognóstico
11.
Neuroimage Clin ; 26: 102244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32193171

RESUMO

Real-time fMRI neurofeedback (rtfMRI-nf) enables noninvasive targeted intervention in brain activation with high spatial specificity. To achieve this promise of rtfMRI-nf, we introduced and demonstrated a data-driven framework to design a rtfMRI-nf intervention through the discovery of precise target location associated with clinical symptoms and neurofeedback signal optimization. Specifically, we identified the functional connectivity locus associated with rumination symptoms, utilizing a connectome-wide search in resting-state fMRI data from a large cohort of mood and anxiety disorder individuals (N = 223) and healthy controls (N = 45). Then, we performed a rtfMRI simulation analysis to optimize the online functional connectivity neurofeedback signal for the identified functional connectivity. The connectome-wide search was performed in the medial prefrontal cortex and the posterior cingulate cortex/precuneus brain regions to identify the precise location of the functional connectivity associated with rumination severity as measured by the ruminative response style (RRS) scale. The analysis found that the functional connectivity between the loci in the precuneus (-6, -54, 48 mm in MNI) and the right temporo-parietal junction (RTPJ; 49, -49, 23 mm) was positively correlated with RRS scores (depressive, p < 0.001; brooding, p < 0.001; reflective, p = 0.002) in the mood and anxiety disorder group. We then performed a rtfMRI processing simulation to optimize the online computation of the precuneus-RTPJ connectivity. We determined that the two-point method without a control region was appropriate as a functional connectivity neurofeedback signal with less dependence on signal history and its accommodation of head motion. The present study offers a discovery framework for the precise location of functional connectivity targets for rtfMRI-nf intervention, which could help directly translate neuroimaging findings into clinical rtfMRI-nf interventions.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Ruminação Cognitiva/fisiologia , Adulto , Transtornos de Ansiedade/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/fisiopatologia , Rede Nervosa/fisiopatologia
12.
Hum Brain Mapp ; 41(2): 342-352, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633257

RESUMO

The ventromedial prefrontal cortex (vmPFC) is involved in regulation of negative emotion and decision-making, emotional and behavioral control, and active resilient coping. This pilot study examined the feasibility of training healthy subjects (n = 27) to self-regulate the vmPFC activity using a real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf). Participants in the experimental group (EG, n = 18) were provided with an ongoing vmPFC hemodynamic activity (rtfMRI-nf signal represented as variable-height bar). Individuals were instructed to raise the bar by self-relevant value-based thinking. Participants in the control group (CG, n = 9) performed the same task; however, they were provided with computer-generated sham neurofeedback signal. Results demonstrate that (a) both the CG and the EG show a higher vmPFC fMRI signal at the baseline than during neurofeedback training; (b) no significant positive training effect was seen in the vmPFC across neurofeedback runs; however, the medial prefrontal cortex, middle temporal gyri, inferior frontal gyri, and precuneus showed significant decreasing trends across the training runs only for the EG; (c) the vmPFC rtfMRI-nf signal associated with the fMRI signal across the default mode network (DMN). These findings suggest that it may be difficult to modulate a single DMN region without affecting other DMN regions. Observed decreased vmPFC activity during the neurofeedback task could be due to interference from the fMRI signal within other DMN network regions, as well as interaction with task-positive networks. Even though participants in the EG did not show significant positive increase in the vmPFC activity among neurofeedback runs, they were able to learn to accommodate the demand of self-regulation task to maintain the vmPFC activity with the help of a neurofeedback signal.


Assuntos
Córtex Cerebral/fisiologia , Rede de Modo Padrão/fisiologia , Neuroimagem Funcional , Neurorretroalimentação/fisiologia , Córtex Pré-Frontal/fisiologia , Autocontrole , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Córtex Pré-Frontal/diagnóstico por imagem
13.
Neuroimage Clin ; 24: 102047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31711031

RESUMO

Self-regulation of brain activation with real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) is emerging as a promising treatment for psychiatric disorders. The association between the regulation and symptom reduction, however, has not been consistent, and the mechanisms underlying the symptom reduction remain poorly understood. The present study investigated brain activity mediators of the amygdala rtfMRI-nf training effect on combat veterans' PTSD symptom reduction. The training was designed to increase a neurofeedback signal either from the left amygdala (experimental group; EG) or from a control region not implicated in emotion regulation (control group; CG) during positive autobiographical memory recall. We employed a structural equation model mapping analysis to identify brain regions that mediated the effects of the rtfMRI-nf training on PTSD symptoms. Symptom reduction was mediated by low activation in the dorsomedial prefrontal cortex (DMPFC) and the middle cingulate cortex. There was a trend toward less activation in these regions for the EG compared to the CG. Low activation in the precuneus, the right superior parietal, the right insula, and the right cerebellum also mediated symptom reduction while their effects were moderated by the neurofeedback signal; a higher signal was linked to less effect on symptom reduction. This moderation was not specific to the EG. MDD comorbidity was associated with high DMPFC activation, which resulted in less effective regulation of the feedback signal. These results indicated that symptom reduction due to the neurofeedback training was not specifically mediated by the neurofeedback target activity, but broad regions were involved in the process.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Emoções/fisiologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia , Adulto , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos/psicologia , Veteranos/psicologia
14.
Neuroimage Clin ; 20: 543-555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175041

RESUMO

Self-regulation of brain activation using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) is an emerging approach for treating mood and anxiety disorders. The effect of neurofeedback training on resting-state functional connectivity warrants investigation as changes in spontaneous brain activation could reflect the association between sustained symptom relief and brain alteration. We investigated the effect of amygdala-focused rtfMRI-nf training on resting-state functional connectivity in combat veterans with and without posttraumatic stress disorder (PTSD) who were trained to increase a feedback signal reflecting left amygdala activity while recalling positive autobiographical memories (Zotev et al., 2018). The analysis was performed in three stages: i) first, we investigated the connectivity in the left amygdala region; ii) next, we focused on the abnormal resting-state functional connectivity identified in our previous analysis of this data (Misaki et al., 2018); and iii) finally, we performed a novel data-driven longitudinal connectome-wide analysis. We introduced a longitudinal multivariate distance matrix regression (MDMR) analysis to comprehensively examine neurofeedback training effects beyond those associated with abnormal baseline connectivity. These comprehensive exploratory analyses suggested that abnormal resting-state connectivity for combat veterans with PTSD was partly normalized after the training. This included hypoconnectivities between the left amygdala and the left ventrolateral prefrontal cortex (vlPFC) and between the supplementary motor area (SMA) and the dorsal anterior cingulate cortex (dACC). The increase of SMA-dACC connectivity was associated with PTSD symptom reduction. Longitudinal MDMR analysis found a connectivity change between the precuneus and the left superior frontal cortex. The connectivity increase was associated with a decrease in hyperarousal symptoms. The abnormal connectivity for combat veterans without PTSD - such as hypoconnectivity in the precuneus with a superior frontal region and hyperconnectivity in the posterior insula with several regions - could also be normalized after the training. These results suggested that the rtfMRI-nf training effect was not limited to a feedback target region and symptom relief could be mediated by brain modulation in several regions other than in a feedback target area. While further confirmatory research is needed, the results may provide valuable insight into treatment effects on the whole brain resting-state connectivity.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Distúrbios de Guerra/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Veteranos/psicologia , Adulto , Tonsila do Cerebelo/fisiologia , Distúrbios de Guerra/psicologia , Distúrbios de Guerra/terapia , Sistemas Computacionais , Humanos , Estudos Longitudinais , Masculino , Neurorretroalimentação/fisiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos de Estresse Pós-Traumáticos/terapia
15.
Neuroimage Clin ; 19: 106-121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30035008

RESUMO

Posttraumatic stress disorder (PTSD) is a chronic and disabling neuropsychiatric disorder characterized by insufficient top-down modulation of the amygdala activity by the prefrontal cortex. Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging method with potential for modifying the amygdala-prefrontal interactions. We report the first controlled emotion self-regulation study in veterans with combat-related PTSD utilizing rtfMRI-nf of the amygdala activity. PTSD patients in the experimental group (EG, n = 20) learned to upregulate blood­oxygenation-level-dependent (BOLD) activity of the left amygdala (LA) using the rtfMRI-nf during a happy emotion induction task. PTSD patients in the control group (CG, n = 11) were provided with a sham rtfMRI-nf. The study included three rtfMRI-nf training sessions, and EEG recordings were performed simultaneously with fMRI. PTSD severity was assessed before and after the training using the Clinician-Administered PTSD Scale (CAPS). The EG participants who completed the study showed a significant reduction in total CAPS ratings, including significant reductions in avoidance and hyperarousal symptoms. They also exhibited a significant reduction in comorbid depression severity. Overall, 80% of the EG participants demonstrated clinically meaningful reductions in CAPS ratings, compared to 38% in the CG. No significant difference in the CAPS rating changes was observed between the groups. During the first rtfMRI-nf session, functional connectivity of the LA with the orbitofrontal cortex (OFC) and the dorsolateral prefrontal cortex (DLPFC) was progressively enhanced, and this enhancement significantly and positively correlated with the initial CAPS ratings. Left-lateralized enhancement in upper alpha EEG coherence also exhibited a significant positive correlation with the initial CAPS. Reduction in PTSD severity between the first and last rtfMRI-nf sessions significantly correlated with enhancement in functional connectivity between the LA and the left DLPFC. Our results demonstrate that the rtfMRI-nf of the amygdala activity has the potential to correct the amygdala-prefrontal functional connectivity deficiencies specific to PTSD.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adulto , Mapeamento Encefálico/métodos , Transtorno Depressivo Maior/patologia , Emoções/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/patologia
16.
Psychiatry Clin Neurosci ; 72(7): 466-481, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687527

RESUMO

Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy.


Assuntos
Tonsila do Cerebelo/fisiologia , Transtorno Depressivo Maior/terapia , Emoções/fisiologia , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética/métodos , Memória Episódica , Rememoração Mental/fisiologia , Neurorretroalimentação/métodos , Humanos
17.
Hum Brain Mapp ; 39(6): 2353-2367, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29450932

RESUMO

Cardiorespiratory fluctuations such as changes in heart rate or respiration volume influence the temporal dynamics of cerebral blood flow (CBF) measurements during arterial spin labeling (ASL) fMRI. This "physiological noise" can confound estimates of resting state network activity, and it may lower the signal-to-noise ratio of ASL during task-related experiments. In this study we examined several methods for minimizing the contributions of both synchronized and non-synchronized physiological noise in ASL measures of CBF, by combining the RETROICOR approach with different linear deconvolution models. We evaluated the amount of variance in CBF that could be explained by each method during physiological rest, in both resting state and task performance conditions. To further demonstrate the feasibility of this approach, we induced low-frequency cardiorespiratory deviations via peripheral adrenergic stimulation with isoproterenol, and determined how these fluctuations influenced CBF, before and after applying noise correction. By suppressing physiological noise, we observed substantial improvements in the signal-to-noise ratio at the individual and group activation levels. Our results suggest that variations in cardiac and respiratory parameters can account for a large proportion of the variance in resting and task-based CBF, and indicate that regressing out these non-neuronal signal variations improves the intrinsically low signal-to-noise ratio of ASL. This approach may help to better identify and control physiologically driven activations in ASL resting state and task-based analyses.


Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca/fisiologia , Respiração , Estimulação Acústica , Agonistas Adrenérgicos beta/farmacologia , Adulto , Atenção/efeitos dos fármacos , Atenção/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Correlação de Dados , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Isoproterenol/farmacologia , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Reconhecimento Visual de Modelos , Estimulação Luminosa , Respiração/efeitos dos fármacos , Marcadores de Spin , Adulto Jovem
18.
Hum Brain Mapp ; 39(2): 1024-1042, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29181883

RESUMO

Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function.


Assuntos
Ritmo alfa , Imageamento por Ressonância Magnética , Neurorretroalimentação , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Adulto , Circulação Cerebrovascular , Feminino , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Neurorretroalimentação/métodos , Oxigênio/sangue , Fatores de Tempo
19.
Neuroimage Clin ; 17: 691-703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29270356

RESUMO

Background: We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. Method: The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Results: Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback regulation success. Conclusions: Neurofeedback training to increase amygdala hemodynamic activity during positive AM recall increased amygdala connectivity with regions involved in self-referential, salience, and reward processing. Results suggest future targets for neurofeedback interventions, particularly interventions involving the precuneus.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Transtorno Depressivo Maior/reabilitação , Imageamento por Ressonância Magnética , Rememoração Mental/fisiologia , Neurorretroalimentação/métodos , Descanso , Adulto , Análise de Variância , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Memória Episódica , Pessoa de Meia-Idade , Oxigênio/sangue , Escalas de Graduação Psiquiátrica , Adulto Jovem
20.
Biol Psychiatry ; 82(8): 578-586, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476207

RESUMO

BACKGROUND: In participants with major depressive disorder who are trained to upregulate their amygdalar hemodynamic responses during positive autobiographical memory recall with real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. This study tested whether amygdalar rtfMRI-nf also changes emotional processing of positive and negative stimuli in a variety of behavioral and imaging tasks. METHODS: Patients with major depressive disorder completed two rtfMRI-nf sessions (18 received amygdalar rtfMRI-nf, 16 received control parietal rtfMRI-nf). One week before and following rtfMRI-nf training, participants performed tasks measuring responses to emotionally valenced stimuli including a backward-masking task, which measures the amygdalar hemodynamic response to emotional faces presented for traditionally subliminal duration and followed by a mask, and the Emotional Test Battery in which reaction times and performance accuracy are measured during tasks involving emotional faces and words. RESULTS: During the backward-masking task, amygdalar responses increased while viewing masked happy faces but decreased to masked sad faces in the experimental versus control group following rtfMRI-nf. During the Emotional Test Battery, reaction times decreased to identification of positive faces and during self-identification with positive words and vigilance scores increased to positive faces and decreased to negative faces during the faces dot-probe task in the experimental versus control group following rtfMRI-nf. CONCLUSIONS: rtfMRI-nf training to increase the amygdalar hemodynamic response to positive memories was associated with changes in amygdalar responses to happy and sad faces and improved processing of positive stimuli during performance of the Emotional Test Battery. These results may suggest that amygdalar rtfMRI-nf training alters responses to emotional stimuli in a manner similar to antidepressant pharmacotherapy.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/reabilitação , Imageamento por Ressonância Magnética , Neurorretroalimentação/métodos , Adolescente , Adulto , Método Duplo-Cego , Emoções , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Oxigênio/sangue , Estimulação Luminosa , Escalas de Graduação Psiquiátrica , Reconhecimento Psicológico , Estatística como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA