Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994659

RESUMO

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Técnicas do Sistema de Duplo-Híbrido
2.
J Exp Bot ; 73(19): 6902-6915, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35816329

RESUMO

Oomycete pathogens secrete hundreds of cytoplasmic RxLR effectors to modulate host immunity by targeting diverse plant proteins. Revealing how effectors manipulate host proteins is pivotal to understanding infection processes and to developing new strategies to control plant disease. Here we show that the Phytophthora infestans RxLR effector Pi22798 interacts in the nucleus with a potato class II knotted-like homeobox (KNOX) transcription factor, StKNOX3. Silencing the ortholog NbKNOX3 in Nicotiana benthamiana reduces host colonization by P. infestans, whereas transient and stable overexpression of StKNOX3 enhances infection. StKNOX3 forms a homodimer which is dependent on its KNOX II domain. The KNOX II domain is also essential for Pi22798 interaction and for StKNOX3 to enhance P. infestans colonization, indicating that StKNOX3 homodimerization contributes to susceptibility. However, critically, the effector Pi22798 promotes StKNOX3 homodimerization, rather than heterodimerization to another KNOX transcription factor StKNOX7. These results demonstrate that the oomycete effector Pi22798 increases pathogenicity by promoting homodimerization specifically of StKNOX3 to enhance susceptibility.


Assuntos
Phytophthora infestans , Solanum tuberosum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas
3.
New Phytol ; 222(1): 438-454, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536576

RESUMO

The potato blight agent Phytophthora infestans secretes a range of RXLR effectors to promote disease. Recent evidence indicates that some effectors suppress early pattern-triggered immunity (PTI) following perception of microbe-associated molecular patterns (MAMPs). Phytophthora infestans effector PiSFI3/Pi06087/PexRD16 has been previously shown to suppress MAMP-triggered pFRK1-Luciferase reporter gene activity. How PiSFI3 suppresses immunity is unknown. We employed yeast-two-hybrid (Y2H) assays, co-immunoprecipitation, transcriptional silencing by RNA interference and virus-induced gene silencing (VIGS), and X-ray crystallography for structure-guided mutagenesis, to investigate the function of PiSFI3 in targeting a plant U-box-kinase protein (StUBK) to suppress immunity. We discovered that PiSFI3 is active in the host nucleus and interacts in yeast and in planta with StUBK. UBK is a positive regulator of specific PTI pathways in both potato and Nicotiana benthamiana. Importantly, it contributes to early transcriptional responses that are suppressed by PiSFI3. PiSFI3 forms an unusual trans-homodimer. Mutation to disrupt dimerization prevents nucleolar localisation of PiSFI3 and attenuates both its interaction with StUBK and its ability to enhance P. infestans leaf colonisation. PiSFI3 is a 'WY-domain' RXLR effector that forms a novel trans-homodimer which is required for its ability to suppress PTI via interaction with the U-box-kinase protein StUBK.


Assuntos
Phytophthora infestans/metabolismo , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Transcrição Gênica , Apoptose/efeitos dos fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Flagelina/farmacologia , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Quinases/química , Multimerização Proteica , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética , Virulência
4.
Plant Physiol ; 177(1): 398-410, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29588335

RESUMO

Plant pathogens deliver effectors to manipulate processes in their hosts, creating a suitable environment for invasion and proliferation. Yet, little is known about the host proteins that are targeted by effectors from filamentous pathogens. Here, we show that stable transgenic expression in potato (Solanum tuberosum) and transient expression in Nicotiana benthamiana of the arginine-any amino acid-leucine-arginine effector Pi17316 enhances leaf colonization by the late blight pathogen Phytophthora infestans Expression of Pi17316 also attenuates cell death triggered by the pathogen-associated molecular pattern Infestin1 (INF1), indicating that the effector suppresses pattern-triggered immunity. However, this effector does not attenuate cell death triggered by a range of resistance proteins, showing that it specifically suppresses INF1-triggered cell death (ICD). In yeast two-hybrid assays, Pi17316 interacts directly with the potato ortholog of VASCULAR HIGHWAY1-interacting kinase (StVIK), encoding a predicted MEK kinase (MAP3K). Interaction in planta was confirmed by coimmunoprecipitation and occurs at the plant plasma membrane. Virus-induced gene silencing of VIK in N. benthamiana attenuated P. infestans colonization, whereas transient overexpression of StVIK enhanced colonization, indicating that this host protein acts as a susceptibility factor. Moreover, VIK overexpression specifically attenuated ICD, indicating that it is a negative regulator of immunity. The abilities of Pi17316 to enhance P. infestans colonization or suppress ICD were compromised significantly in NbVIK-silenced plants, demonstrating that the effector activity of Pi17316 is mediated by this MAP3K. Thus, StVIK is exploited by P. infestans as a susceptibility factor to promote late blight disease.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/microbiologia , Fatores de Virulência/metabolismo , Morte Celular , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Phytophthora infestans/crescimento & desenvolvimento , Phytophthora infestans/patogenicidade , Ligação Proteica , Nicotiana/microbiologia , Virulência
5.
Plant Physiol ; 174(1): 356-369, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28270626

RESUMO

An emerging area in plant research focuses on antagonism between regulatory systems governing growth and immunity. Such cross talk represents a point of vulnerability for pathogens to exploit. AVR2, an RXLR effector secreted by the potato blight pathogen Phytophthora infestans, interacts with potato BSL1, a putative phosphatase implicated in growth-promoting brassinosteroid (BR) hormone signaling. Transgenic potato (Solanum tuberosum) plants expressing the effector exhibit transcriptional and phenotypic hallmarks of overactive BR signaling and show enhanced susceptibility to P. infestans Microarray analysis was used to identify a set of BR-responsive marker genes in potato, all of which are constitutively expressed to BR-induced levels in AVR2 transgenic lines. One of these genes was a bHLH transcription factor, designated StCHL1, homologous to AtCIB1 and AtHBI1, which are known to facilitate antagonism between BR and immune responses. Transient expression of either AVR2 or CHL1 enhanced leaf colonization by P. infestans and compromised immune cell death activated by perception of the elicitin Infestin1 (INF1). Knockdown of CHL1 transcript using Virus-Induced Gene Silencing (VIGS) reduced colonization of P. infestans on Nicotiana benthamiana Moreover, the ability of AVR2 to suppress INF1-triggered cell death was attenuated in NbCHL1-silenced plants, indicating that NbCHL1 was important for this effector activity. Thus, AVR2 exploits cross talk between BR signaling and innate immunity in Solanum species, representing a novel, indirect mode of innate immune suppression by a filamentous pathogen effector.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Brassinosteroides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Regulação para Cima , Fatores de Virulência/genética
6.
Curr Opin Microbiol ; 34: 127-135, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27723513

RESUMO

Late blight, caused by the oomycete Phytophthora infestans, is a major global disease of potato and tomato. Cell biology is teaching us much about the developmental stages associated with infection, especially the haustorium, which is a site of intimate interaction and molecular exchange between pathogen and host. Recent observations suggest a role for the plant endocytic cycle in specific recruitment of host proteins to the Extra-Haustorial Membrane, emphasising the unique nature of this membrane compartment. In addition, there has been a strong focus on the activities of RXLR effectors, which are delivered into plant cells to modulate and manipulate host processes. RXLR effectors interact directly with diverse plant proteins at a range of subcellular locations to promote disease.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Interações Hospedeiro-Patógeno , Solanum lycopersicum/microbiologia , Phytophthora infestans/genética , Phytophthora infestans/isolamento & purificação , Phytophthora infestans/patogenicidade , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Solanum tuberosum/microbiologia , Virulência
7.
Plant Physiol ; 171(1): 645-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966171

RESUMO

Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Solanum tuberosum/microbiologia , Morte Celular/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Phytophthora infestans/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Nicotiana/genética , Nicotiana/metabolismo
8.
Nat Commun ; 7: 10311, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822079

RESUMO

Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c-1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease.


Assuntos
Nicotiana/enzimologia , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Proteína Fosfatase 1/metabolismo , Solanum tuberosum/enzimologia , Interações Hospedeiro-Patógeno , Phytophthora infestans/genética , Doenças das Plantas/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Ligação Proteica , Proteína Fosfatase 1/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Nicotiana/genética , Nicotiana/parasitologia
9.
J Exp Bot ; 66(11): 3189-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873665

RESUMO

Ubiquitination regulates many processes in plants, including immunity. The E3 ubiquitin ligase PUB17 is a positive regulator of programmed cell death (PCD) triggered by resistance proteins CF4/9 in tomato. Its role in immunity to the potato late blight pathogen, Phytophthora infestans, was investigated here. Silencing StPUB17 in potato by RNAi and NbPUB17 in Nicotiana benthamiana by virus-induced gene silencing (VIGS) each enhanced P. infestans leaf colonization. PAMP-triggered immunity (PTI) transcriptional responses activated by flg22, and CF4/Avr4-mediated PCD were attenuated by silencing PUB17. However, silencing PUB17 did not compromise PCD triggered by P. infestans PAMP INF1, or co-expression of R3a/AVR3a, demonstrating that not all PTI- and PCD-associated responses require PUB17. PUB17 localizes to the plant nucleus and especially in the nucleolus. Transient over-expression of a dominant-negative StPUB17(V314I,V316I) mutant, which retained nucleolar localization, suppressed CF4-mediated cell death and enhanced P. infestans colonization. Exclusion of the StPUB17(V314I,V316I) mutant from the nucleus abolished its dominant-negative activity, demonstrating that StPUB17 functions in the nucleus. PUB17 is a positive regulator of immunity to late blight that acts in the nucleus to promote specific PTI and PCD pathways.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Solanum tuberosum/enzimologia , Ubiquitina-Proteína Ligases/genética , Apoptose , Núcleo Celular/enzimologia , Inativação Gênica , Mutação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/imunologia , Ubiquitina-Proteína Ligases/metabolismo
10.
PLoS One ; 9(10): e110158, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25340613

RESUMO

Engineering resistance genes to gain effector recognition is emerging as an important step in attaining broad, durable resistance. We engineered potato resistance gene R3a to gain recognition of the virulent AVR3aEM effector form of Phytophthora infestans. Random mutagenesis, gene shuffling and site-directed mutagenesis of R3a were conducted to produce R3a* variants with gain of recognition towards AVR3aEM. Programmed cell death following gain of recognition was enhanced in iterative rounds of artificial evolution and neared levels observed for recognition of AVR3aKI by R3a. We demonstrated that R3a*-mediated recognition responses, like for R3a, are dependent on SGT1 and HSP90. In addition, this gain of response is associated with re-localisation of R3a* variants from the cytoplasm to late endosomes when co-expressed with either AVR3aKI or AVR3aEM a mechanism that was previously only seen for R3a upon co-infiltration with AVR3aKI. Similarly, AVR3aEM specifically re-localised to the same vesicles upon recognition by R3a* variants, but not with R3a. R3a and R3a* provide resistance to P. infestans isolates expressing AVR3aKI but not those homozygous for AVR3aEM.


Assuntos
Evolução Molecular Direcionada , Resistência à Doença/genética , Genes de Plantas , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidade , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Agrobacterium/fisiologia , Apoptose , Embaralhamento de DNA , Endossomos/metabolismo , Homozigoto , Mutagênese Sítio-Dirigida , Mutação/genética , Phytophthora infestans/isolamento & purificação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/metabolismo , Virulência , Fatores de Virulência
11.
Plant Cell ; 24(12): 5142-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23243124

RESUMO

An important objective of plant-pathogen interactions research is to determine where resistance proteins detect pathogen effectors to mount an immune response. Many nucleotide binding-Leucine-rich repeat (NB-LRR) resistance proteins accumulate in the plant nucleus following effector recognition, where they initiate the hypersensitive response (HR). Here, we show that potato (Solanum tuberosum) resistance protein R3a relocates from the cytoplasm to endosomal compartments only when coexpressed with recognized Phytophthora infestans effector form AVR3a(KI) and not unrecognized form AVR3a(EM). Moreover, AVR3a(KI), but not AVR3a(EM), is also relocalized to endosomes in the presence of R3a. Both R3a and AVR3a(KI) colocalized in close physical proximity at endosomes in planta. Treatment with brefeldin A (BFA) or wortmannin, inhibitors of the endocytic cycle, attenuated both the relocalization of R3a to endosomes and the R3a-mediated HR. No such effect of these inhibitors was observed on HRs triggered by the gene-for-gene pairs Rx1/PVX-CP and Sto1/IpiO1. An R3a(D501V) autoactive MHD mutant, which triggered HR in the absence of AVR3a(KI), failed to localize to endosomes. Moreover, BFA and wortmannin did not alter cell death triggered by this mutant. We conclude that effector recognition and consequent HR signaling by NB-LRR resistance protein R3a require its relocalization to vesicles in the endocytic pathway.


Assuntos
Endossomos/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo , Androstadienos/farmacologia , Brefeldina A/farmacologia , Endossomos/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Wortmanina
12.
New Phytol ; 191(3): 763-776, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21539575

RESUMO

• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.


Assuntos
Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Polimorfismo Genético/genética , Proteínas/metabolismo , Solanum tuberosum/fisiologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica , Genes Dominantes/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estrutura Terciária de Proteína , Proteínas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(21): 9909-14, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20457921

RESUMO

Fungal and oomycete plant pathogens translocate effector proteins into host cells to establish infection. However, virulence targets and modes of action of their effectors are unknown. Effector AVR3a from potato blight pathogen Phytophthora infestans is translocated into host cells and occurs in two forms: AVR3a(KI), which is detected by potato resistance protein R3a, strongly suppresses infestin 1 (INF1)-triggered cell death (ICD), whereas AVR3a(EM), which evades recognition by R3a, weakly suppresses host ICD. Here we show that AVR3a interacts with and stabilizes host U-box E3 ligase CMPG1, which is required for ICD. In contrast, AVR3a(KI/Y147del), a mutant with a deleted C-terminal tyrosine residue that fails to suppress ICD, cannot interact with or stabilize CMPG1. CMPG1 is stabilized by the inhibitors MG132 and epoxomicin, indicating that it is degraded by the 26S proteasome. CMPG1 is degraded during ICD. However, it is stabilized by mutations in the U-box that prevent its E3 ligase activity. In stabilizing CMPG1, AVR3a thus modifies its normal activity. Remarkably, given the potential for hundreds of effector genes in the P. infestans genome, silencing Avr3a compromises P. infestans pathogenicity, suggesting that AVR3a is essential for virulence. Interestingly, Avr3a silencing can be complemented by in planta expression of Avr3a(KI) or Avr3a(EM) but not the Avr3a(KI/Y147del) mutant. Our data provide genetic evidence that AVR3a is an essential virulence factor that targets and stabilizes the plant E3 ligase CMPG1, potentially to prevent host cell death during the biotrophic phase of infection.


Assuntos
Proteínas de Algas/imunologia , Proteínas de Algas/metabolismo , Phytophthora infestans/imunologia , Solanum tuberosum/enzimologia , Solanum tuberosum/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Algas/genética , Estabilidade Enzimática , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidade , Solanum tuberosum/parasitologia , Virulência
14.
Nature ; 461(7262): 393-8, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19741609

RESUMO

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Assuntos
Genoma/genética , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas de Algas/genética , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Humanos , Irlanda , Dados de Sequência Molecular , Necrose , Fenótipo , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , Inanição
15.
Cell Microbiol ; 10(11): 2271-84, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18637942

RESUMO

Phytophthora infestans causes late-blight, a devastating and re-emerging disease of potato crops. During the early stages of infection, P. infestans differentiates infection-specific structures such as appressoria for host epidermal cell penetration, followed by infection vesicles, and haustoria to establish a biotrophic phase of interaction. Here we report the cloning, from a suppression subtractive hybridization library, of a P. infestans gene called Pihmp1 encoding a putative glycosylated protein with four closely spaced trans-membrane helices. Pihmp1 expression is upregulated in germinating cysts and in germinating cysts with appressoria, and significantly upregulated throughout infection of potato. Transient gene silencing of Pihmp1 led to loss of pathogenicity and indicated involvement of this gene in the penetration and early infection processes of P. infestans. P. infestans transformants expressing a Pihmp1::monomeric red fluorescent protein (mRFP) fusion demonstrated that Pihmp1 was translated in germinating sporangia, germinating cysts and appressoria, accumulated in the appressorium, and was located at the haustorial membrane during infection. Furthermore, we discovered that haustorial structures are formed over a 3 h period, maturing for up to 12 h, and that their formation is initiated only at sites on the surface of intercellular hyphae where Pihmp1::mRFP is localized. We propose that Pihmp1 is an integral membrane protein that provides physical stability to the plasma membrane of P. infestans infection structures. We have provided the first evidence that the surface of oomycete haustoria possess proteins specific to these biotrophic structures, and that formation of biotrophic structures (infection vesicles and haustoria) is essential to successful host colonization by P. infestans.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Membrana/metabolismo , Phytophthora infestans/citologia , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas de Algas/genética , Sequência de Aminoácidos , Inativação Gênica , Proteínas de Membrana/genética , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/microbiologia , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Solanum tuberosum/anatomia & histologia
16.
Nature ; 450(7166): 115-8, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17914356

RESUMO

Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.


Assuntos
Proteínas de Algas/química , Proteínas de Algas/metabolismo , Nicotiana/metabolismo , Phytophthora/metabolismo , Sinais Direcionadores de Proteínas , Solanum tuberosum/metabolismo , Alanina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional , Pectobacterium/genética , Phytophthora/química , Transporte Proteico , Pseudomonas syringae/genética , Solanum tuberosum/microbiologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA