Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant ; 6(2): 337-49, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22986790

RESUMO

Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins. We identified eight putative StYUC (Solanum tuberosum YUCCA) genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins. All include canonical, conserved YUCCA sequences: FATGY motif, FMO signature sequence, and FAD-binding and NADP-binding sequences. In addition, five genes were found with ~50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases. Transgenic potato (Solanum tuberosum cv. Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves, increased height, erect stature, and longevity. Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss. The phenotype was correlated with reduced levels of reactive oxygen species in leaves. The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Fenótipo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Bases de Dados Genéticas , Expressão Gênica , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Solanum tuberosum/fisiologia , Estresse Fisiológico , Triptofano Transaminase/genética
2.
Plant Physiol ; 155(2): 1000-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21156857

RESUMO

Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Ligases/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ligases/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos/deficiência , Ftalimidas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Plântula/crescimento & desenvolvimento
3.
J Exp Bot ; 59(8): 2109-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18535297

RESUMO

The drought stress tolerance of two Solanum tuberosum subsp. andigena landraces, one hybrid (adgxtbr) and Atlantic (S. tuberosum subsp. tuberosum) has been evaluated. Photosynthesis in the Andigena landraces during prolonged drought was maintained significantly longer than in the Tuberosum (Atlantic) line. Among the Andigena landraces, 'Sullu' (SUL) was more drought resistant than 'Negra Ojosa' (NOJ). Microarray analysis and metabolite data from leaf samples taken at the point of maximum stress suggested higher mitochondrial metabolic activity in SUL than in NOJ. A greater induction of chloroplast-localized antioxidant and chaperone genes in SUL compared with NOJ was evident. ABA-responsive TFs were more induced in NOJ compared with SUL, including WRKY1, mediating a response in SA signalling that may give rise to increased ROS. NOJ may be experiencing higher ROS levels than SUL. Metabolite profiles of NOJ were characterized by compounds indicative of stress, for example, proline, trehalose, and GABA, which accumulated to a higher degree than in SUL. The differences between the Andigena lines were not explained by protective roles of compatible solutes; hexoses and complex sugars were similar in both landraces. Instead, lower levels of ROS accumulation, greater mitochondrial activity and active chloroplast defences contributed to a lower stress load in SUL than in NOJ during drought.


Assuntos
Adaptação Fisiológica , Desastres , Regulação da Expressão Gênica de Plantas , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Genótipo , Mitocôndrias/genética , Mitocôndrias/fisiologia , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética
4.
Plant Physiol Biochem ; 46(1): 34-45, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18061466

RESUMO

A drought screen identified accessions of Solanum tuberosum ssp. andigena that showed varying degrees of physiological acclimation or adaptation to repeated drought stress. The accessions also showed variable tuber phenotypes from small tubers that failed to develop in an accession that showed photosynthetic adaptation to normal tubers in an accession with a phenotype showing some degree of photosynthetic adaptation and acclimation. Using microarray data, we correlated the expression of genes associated with carbon metabolism with the tuber development phenotypes under drought. Genes associated with sucrose and starch metabolism showed responses consistent with starch deficiency in the adapted accession and normal starch deposition in the intermediate accession. Starch phosphorylase and glycogen bound starch synthase were induced in the adapted accession, which had abnormal tuber development. Genes associated with trehalose were induced in the intermediate accession with normal tuber development. Genes associated with respiration were also induced in the intermediate accession, and a pattern compatible with the existence of a 3PGA recovery pathway was revealed. Expression of thioredoxin genes also correlated with tuber development phenotypes under drought stress. The data suggest differential regulation of starch deposition in accessions of Andigena with different abilities to respond to drought stress.


Assuntos
Aclimatação/fisiologia , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Metabolismo dos Carboidratos/fisiologia , Desastres , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Amido/biossíntese , Amido/genética , Tiorredoxinas/biossíntese , Tiorredoxinas/genética , Trealose/biossíntese , Trealose/genética
5.
Plant Mol Biol ; 52(5): 967-80, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14558658

RESUMO

From the ice plant, Mesembryanthemum crystallinum, McHKT1 was isolated encoding a protein 41-61% identical to other plant HKT1-like sequences previously described as potassium or sodium/potassium transporters. McHKT1 acts as a potassium transporter in yeast with specificity similar to that of wheat HKT1. In Xenopus oocytes it transports cations with a specificity Rb+ > Cs+ > [K+ = Na+ = Li+]. McHKT1 is exclusively localized to the plasma membrane. The isoform isolated is most highly expressed in leaves and is present in stems, flowers and seed pods but absent from the root where, according to immunological data, a second isoform exists which does not cross-hybridize with the leaf form in RNA blots at high stringency. McHKT1 transcript amounts increase during the first 6-10 h of stress and then decline to pre-stress levels with kinetics reminiscent of the initial influx of sodium into this halophyte. Immunocytological localization showed strong signals in the leaf vasculature and surrounding mesophyll cells but low-intensity signals are also detected in other cell types. In roots, McHKT is mainly confined to endodermis and stele. Possible functions of McHKT1 in ion homeostasis in the halophytic ice plant are discussed.


Assuntos
Proteínas de Transporte de Cátions/genética , Mesembryanthemum/genética , Simportadores/genética , Sequência de Aminoácidos , Animais , Transporte Biológico , Northern Blotting , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/genética , Potássio/metabolismo , Isoformas de Proteínas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Simportadores/metabolismo , Xenopus
6.
Plant Mol Biol ; 52(4): 873-91, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-13677474

RESUMO

Using a cDNA microarray containing 7943 ESTs, the behavior of the maize root transcriptome has been monitored in a time course for 72 h after imposition of salinity stress (150 mM NaCI). Under these conditions, root sodium amounts increased faster than in leaves, and root potassium decreased significantly. Although the overall free amino acid concentration was not affected, amino acid composition was changed with proline and asparagine increasing. Microarray analysis identified 916 ESTs representing genes whose steady-state RNA levels were significantly altered at various time points, corresponding to 11% of the ESTs printed. The response of the transcriptome to sub-lethal salt stress was rapid and transient, leading to a burst of changes at the three-hour time point. The salt-regulated ESTs represented 472 tentatively unique genes (TUGs), which, based on functional category analysis, are involved in a broad range of cellular and biochemical activities, prominent amongst which were transport and signal transduction pathways. Clustering of regulated transcripts based on the timing and duration of changes suggests a structured succession of induction and repression for salt responsive genes in multiple signal and response cascades. Within this framework, 16 signaling molecules, including six protein kinases, two protein phosphatases and eight transcription factors, were regulated with distinct expression patterns by high salinity.


Assuntos
Raízes de Plantas/genética , Cloreto de Sódio/farmacologia , Zea mays/genética , Aminoácidos/metabolismo , Cálcio/metabolismo , Análise por Conglomerados , DNA Complementar/química , DNA Complementar/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Potássio/metabolismo , RNA de Plantas/efeitos dos fármacos , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de DNA , Transdução de Sinais/genética , Sódio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA