Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bone Miner Res ; 23(6): 777-87, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18086009

RESUMO

INTRODUCTION: Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6-dependent seizures. There is no established medical treatment. MATERIALS AND METHODS: Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2-/-), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, microCT, and histomorphometry. RESULTS: Akp2-/- mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. CONCLUSIONS: Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2-/- mice.


Assuntos
Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/uso terapêutico , Terapia Biológica , Hipofosfatasia/tratamento farmacológico , Hipofosfatasia/enzimologia , Fosfatase Alcalina/deficiência , Fosfatase Alcalina/farmacocinética , Animais , Humanos , Hipofosfatasia/diagnóstico por imagem , Hipofosfatasia/genética , Camundongos , Camundongos Knockout , Radiografia , Fatores de Tempo
2.
Mol Cell Biol ; 24(10): 4428-37, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121861

RESUMO

Members of the M13 family of zinc metalloendopeptidases have been shown to play critical roles in the metabolism of various neuropeptides and peptide hormones, and they have been identified as important therapeutic targets. Recently, a mouse NL1 protein, a novel member of the family, was identified and shown to be expressed mainly in the testis as a secreted protein. To define its physiological role(s), we used a gene targeting strategy to disrupt the endogenous murine Nl1 gene by homologous recombination and generate Nl1 mutant mice. The Nl1(-/-) mice were viable and developed normally, suggesting that zygotic expression of Nl1 is not required for development. However, Nl1(-/-) males produced smaller litters than their wild-type siblings, indicating specific male fertility problems. Reduced fertility may be explained by two impaired processes, decreased egg fertilization and perturbed early development of fertilized eggs. These two phenotypes did not result from gross anatomical modifications of the testis or from impaired spermatogenesis. Basic sperm parameters were also normal. Thus, our findings suggest that one of the roles of NL1 in mice is related to sperm function and that NL1 modulates the processes of fertilization and early embryonic development in vivo.


Assuntos
Infertilidade Masculina/enzimologia , Metaloendopeptidases/deficiência , Animais , Sequência de Bases , DNA Complementar/genética , Desenvolvimento Embrionário e Fetal/genética , Desenvolvimento Embrionário e Fetal/fisiologia , Feminino , Fertilização/genética , Fertilização/fisiologia , Marcação de Genes , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Fenótipo , Gravidez , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA