Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 110(6): 1791-1810, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411592

RESUMO

Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome-scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein-coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity-associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene ß-cyclase whose function we demonstrate.


Assuntos
Solanum lycopersicum , Solanum , Antocianinas/genética , Cromossomos de Plantas/genética , Solanum lycopersicum/genética , Melhoramento Vegetal , Solanum/genética
2.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35026436

RESUMO

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Assuntos
Solanum tuberosum , Tetraploidia , Alelos , Cromossomos , Melhoramento Vegetal , Proteoma/genética , Solanum tuberosum/genética , Transcriptoma/genética
3.
Plant Cell ; 29(10): 2336-2348, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29025960

RESUMO

Updates in nanopore technology have made it possible to obtain gigabases of sequence data. Prior to this, nanopore sequencing technology was mainly used to analyze microbial samples. Here, we describe the generation of a comprehensive nanopore sequencing data set with a median read length of 11,979 bp for a self-compatible accession of the wild tomato species Solanum pennellii We describe the assembly of its genome to a contig N50 of 2.5 MB. The assembly pipeline comprised initial read correction with Canu and assembly with SMARTdenovo. The resulting raw nanopore-based de novo genome is structurally highly similar to that of the reference S. pennellii LA716 accession but has a high error rate and was rich in homopolymer deletions. After polishing the assembly with Illumina reads, we obtained an error rate of <0.02% when assessed versus the same Illumina data. We obtained a gene completeness of 96.53%, slightly surpassing that of the reference S. pennellii Taken together, our data indicate that such long read sequencing data can be used to affordably sequence and assemble gigabase-sized plant genomes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Solanum/genética , Análise de Sequência de DNA
4.
Nat Genet ; 46(9): 1034-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064008

RESUMO

Solanum pennellii is a wild tomato species endemic to Andean regions in South America, where it has evolved to thrive in arid habitats. Because of its extreme stress tolerance and unusual morphology, it is an important donor of germplasm for the cultivated tomato Solanum lycopersicum. Introgression lines (ILs) in which large genomic regions of S. lycopersicum are replaced with the corresponding segments from S. pennellii can show remarkably superior agronomic performance. Here we describe a high-quality genome assembly of the parents of the IL population. By anchoring the S. pennellii genome to the genetic map, we define candidate genes for stress tolerance and provide evidence that transposable elements had a role in the evolution of these traits. Our work paves a path toward further tomato improvement and for deciphering the mechanisms underlying the myriad other agronomic traits that can be improved with S. pennellii germplasm.


Assuntos
Genoma de Planta , Solanum/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Elementos de DNA Transponíveis , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA