Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosci Lett ; 792: 136955, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347339

RESUMO

GPR139 is an orphan G-protein-coupled receptor that is expressed in restricted areas of the nervous system, including the hypothalamus. In this study, we hypothesized that GPR139 could be involved in the regulation of energy balance and metabolism. In the first part of the study, we confirmed that GPR139 is expressed in the hypothalamus and particularly in proopiomelanocortin and agouti-related peptide neurons of the mediobasal hypothalamus. Using a lentivirus with a short-hairpin RNA, we inhibited the expression of GPR139 bilaterally in the mediobasal hypothalamus of mice. The intervention promoted a 40% reduction in the hypothalamic expression of GPR139, which was accompanied by an increase in body mass, a reduction in fasting blood glucose levels, and an increase in insulin levels. In the hypothalamus, inhibition of GPR139 was accompanied by a reduction in the expression of orexin. As previous studies using a pharmacological antagonist of orexin showed a beneficial impact on type 2 diabetes and glucose metabolism, we propose that the inhibition of hypothalamic GPR139 could be acting indirectly through the orexin system to control systemic glucose and insulin. In conclusion, this study advances the characterization of GPR139 in the hypothalamus, demonstrating its involvement in the regulation of body mass, blood insulin, and glycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Camundongos , Animais , Orexinas/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Neurosci Lett ; 781: 136660, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35489647

RESUMO

Currently, up to 35% off all drugs approved for the treatment of human diseases belong to the G-protein-coupled receptor (GPCR) family. Out of the almost 800 existing GPCRs, 25% have no known endogenous ligands and are regarded as orphan receptors; many of these are currently under investigation as potential pharmacological targets. Here, we hypothesised that orphan GPCRs expressed in the hypothalamus could be targets for the treatment of obesity and other metabolic diseases. Using bioinformatic tools, we identified 78 class A orphan GPCRs that are expressed in the hypothalamus of mice. Initially, we selected two candidates and determined their responsivities to nutritional interventions: GPR162, the GPCR with highest expression in the hypothalamus, and GPR68, a GPCR with intermediate expression in the hypothalamus and that has never been explored for its potential involvement in metabolic regulation. GPR162 expression was not modified by fasting/feeding or by the consumption of a high-fat diet, and was therefore not subsequently evaluated. Conversely, GPR68 expression increased in response to the consumption of a high-fat diet and reduced under fasting conditions. Using immunofluorescence, GPR68 was identified in both proopiomelanocortin-expressing and agouti-related peptide-expressing neurons in the hypothalamic arcuate nucleus. Acute inhibition of GPR68 with an allosteric modulator promoted an increase in the expression of the orexigenic agouti-related peptide and neuropeptide Y, whereas 4- and 12-h inhibition of GPR68 resulted in increased caloric intake. Thus, GPR68 has emerged as an orphan GPCR that is expressed in the hypothalamus and is involved in the regulation of feeding.


Assuntos
Núcleo Arqueado do Hipotálamo , Hipotálamo , Receptores Acoplados a Proteínas G , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Hipotálamo/metabolismo , Camundongos , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Brain Behav Immun ; 87: 272-285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31863824

RESUMO

Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake. We confirm that food intake increases IL-17 expression in the mouse ileum and human blood. There is no expression of IL-17 in the hypothalamus; however, IL-17 receptor A is expressed in both pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Upon systemic injection, IL-17 promoted a rapid increase in hypothalamic POMC expression, which was followed by a late increase in the expression of AgRP. Both systemic and intracerebroventricular injections of IL-17 reduced calorie intake without affecting whole-body energy expenditure. Systemic but not intracerebroventricular injection of IL-17 increase brown adipose tissue temperature. Thus, IL-17 is a gut-produced factor that is controlled by diet and modulates food intake by acting in the hypothalamus. Our findings provide the first evidence of a cytokine that is acutely regulated by food intake and plays a role in the regulation of eating.


Assuntos
Hipotálamo , Interleucina-17 , Proteína Relacionada com Agouti/metabolismo , Animais , Ingestão de Alimentos , Humanos , Hipotálamo/metabolismo , Camundongos , Pró-Opiomelanocortina/metabolismo
4.
Int J Obes (Lond) ; 43(12): 2361-2369, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548571

RESUMO

The characterization of the hypothalamic neuronal network, that controls food intake and energy expenditure, has provided great advances in the understanding of the pathophysiology of obesity. Most of the advances in this field were obtained thanks to the development of a number of genetic and nongenetic animal models that, at least in part, overtook the anatomical constraints that impair the study of the human hypothalamus. Despite the undisputed differences between human and rodent physiology, most seminal studies undertaken in rodents that have unveiled details of the neural regulation of energy homeostasis were eventually confirmed in humans; thus, placing experimental studies in the forefront of obesity research. During the last 15 years, researchers have provided extensive experimental proof that supports the existence of hypothalamic dysfunction, which leads to a progressive whole-body positive energy balance, and thus, to obesity. Here, we review the experimental work that unveiled the mechanisms behind hypothalamic dysfunction in obesity.


Assuntos
Hipotálamo , Neurônios/fisiologia , Obesidade/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Hipotálamo/citologia , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Camundongos
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1126-1137, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738810

RESUMO

In experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation. In order to identify chemokines potentially involved in this process, we performed a real-time PCR array that determined Ackr2 as one of the transcripts undergoing differential regulation in obese-prone as compared to obese-resistant mice fed a high-fat diet for three days. ACKR2 is a decoy receptor that acts as an inhibitor of the signals generated by several CC inflammatory chemokines. Our results show that Ackr2 expression is rapidly induced after exposure to dietary fats both in obese-prone and obese-resistant mice. In immunofluorescence studies, ACKR2 was detected in hypothalamic neurons expressing POMC and NPY and also in microglia and astrocytes. The lentiviral overexpression of ACKR2 in the hypothalamus reduced diet-induced hypothalamic inflammation; however, there was no change in spontaneous caloric intake and body mass. Nevertheless, the overexpression of ACKR2 resulted in improvement of glucose tolerance, which was accompanied by reduced insulin secretion and increased whole body insulin sensitivity. Thus, ACKR2 is a decoy chemokine receptor expressed in most hypothalamic cells that is modulated by dietary intervention and acts to reduce diet-induced inflammation, leading to improved glucose tolerance due to improved insulin action.


Assuntos
Perfilação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/metabolismo , Inflamação/genética , Obesidade/genética , Receptores de Quimiocinas/genética , Animais , Astrócitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Teste de Tolerância a Glucose , Hipotálamo/citologia , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptores de Quimiocinas/metabolismo
6.
Brain Behav Immun ; 78: 78-90, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30660601

RESUMO

Obesity-associated hypothalamic inflammation plays an important role in the development of defective neuronal control of whole body energy balance. Because dietary fats are the main triggers of hypothalamic inflammation, we hypothesized that CD1, a lipid-presenting protein, may be involved in the hypothalamic inflammatory response in obesity. Here, we show that early after the introduction of a high-fat diet, CD1 expressing cells gradually appear in the mediobasal hypothalamus. The inhibition of hypothalamic CD1 reduces diet-induced hypothalamic inflammation and rescues the obese and glucose-intolerance phenotype of mice fed a high-fat diet. Conversely, the chemical activation of hypothalamic CD1 further increases diet-induced obesity and hypothalamic inflammation. A bioinformatics analysis revealed that hypothalamic CD1 correlates with transcripts encoding for proteins known to be involved in diet-induced hypothalamic abnormalities in obesity. Thus, CD1 is involved in at least part of the hypothalamic inflammatory response in diet-induced obesity and its modulation affects the body mass phenotype of mice.


Assuntos
Antígenos CD1/metabolismo , Hipotálamo/imunologia , Obesidade/metabolismo , Animais , Antígenos CD1/imunologia , Biologia Computacional/métodos , Dieta Hiperlipídica , Gorduras na Dieta , Metabolismo Energético , Inflamação/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos , Obesidade/imunologia
7.
J Neuroinflammation ; 14(1): 178, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865476

RESUMO

BACKGROUND: The consumption of large amounts of dietary fats can trigger an inflammatory response in the hypothalamus and contribute to the dysfunctional control of caloric intake and energy expenditure commonly present in obesity. The objective of this study was to identify chemokine-related transcripts that could be involved in the early stages of diet-induced hypothalamic inflammation. METHODS: We used immunoblot, PCR array, real-time PCR, immunofluorescence staining, glucose and insulin tolerance tests, and determination of general metabolic parameters to evaluate markers of inflammation, body mass variation, and glucose tolerance in mice fed a high-fat diet. RESULTS: Using a real-time PCR array, we identified leukemia inhibitory factor as a chemokine/cytokine undergoing a rapid increase in the hypothalamus of obesity-resistant and a rapid decrease in the hypothalamus of obesity-prone mice fed a high-fat diet for 1 day. We hypothesized that the increased hypothalamic expression of leukemia inhibitory factor could contribute to the protective phenotype of obesity-resistant mice. To test this hypothesis, we immunoneutralized hypothalamic leukemia inhibitory factor and evaluated inflammatory and metabolic parameters. The immunoneutralization of leukemia inhibitory factor in the hypothalamus of obesity-resistant mice resulted in increased body mass gain and increased adiposity. Body mass gain was mostly due to increased caloric intake and reduced spontaneous physical activity. This modification in the phenotype was accompanied by increased expression of inflammatory cytokines in the hypothalamus. In addition, the inhibition of hypothalamic leukemia inhibitory factor was accompanied by glucose intolerance and insulin resistance. CONCLUSION: Hypothalamic expression of leukemia inhibitory factor may protect mice from the development of diet-induced obesity; the inhibition of this protein in the hypothalamus transforms obesity-resistant into obesity-prone mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hipotálamo/metabolismo , Fator Inibidor de Leucemia/antagonistas & inibidores , Fator Inibidor de Leucemia/biossíntese , Obesidade/metabolismo , Fenótipo , Animais , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Hipotálamo/efeitos dos fármacos , Imunoglobulina G/farmacologia , Masculino , Camundongos , Obesidade/etiologia , Distribuição Aleatória
8.
J Neuroinflammation ; 14(1): 5, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28086928

RESUMO

BACKGROUND: Diet-induced hypothalamic inflammation is an important mechanism leading to dysfunction of neurons involved in controlling body mass. Studies have shown that polyunsaturated fats can reduce hypothalamic inflammation. Here, we evaluated the presence and function of RvD2, a resolvin produced from docosahexaenoic acid, in the hypothalamus of mice. METHODS: Male Swiss mice were fed either chow or a high-fat diet. RvD2 receptor and synthetic enzymes were evaluated by real-time PCR and immunofluorescence. RvD2 was determined by mass spectrometry. Dietary and pharmacological approaches were used to modulate the RvD2 system in the hypothalamus, and metabolic phenotype consequences were determined. RESULTS: All enzymes involved in the synthesis of RvD2 were detected in the hypothalamus and were modulated in response to the consumption of dietary saturated fats, leading to a reduction of hypothalamic RvD2. GPR18, the receptor for RvD2, which was detected in POMC and NPY neurons, was also modulated by dietary fats. The substitution of saturated by polyunsaturated fats in the diet resulted in increased hypothalamic RvD2, which was accompanied by reduced body mass and improved glucose tolerance. The intracerebroventricular treatment with docosahexaenoic acid resulted in increased expression of the RvD2 synthetic enzymes, increased expression of anti-inflammatory cytokines and improved metabolic phenotype. Finally, intracerebroventricular treatment with RvD2 resulted in reduced adiposity, improved glucose tolerance and increased hypothalamic expression of anti-inflammatory cytokines. CONCLUSIONS: Thus, RvD2 is produced in the hypothalamus, and its receptor and synthetic enzymes are modulated by dietary fats. The improved metabolic outcomes of RvD2 make this substance an attractive approach to treat obesity.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Encefalite/tratamento farmacológico , Encefalite/etiologia , Hipotálamo/metabolismo , Obesidade/complicações , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Hipotálamo/patologia , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/induzido quimicamente , Consumo de Oxigênio/fisiologia , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
9.
PLoS One ; 10(3): e0119850, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786112

RESUMO

Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell-line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Autofagia/fisiologia , Ácidos Graxos/metabolismo , Hipotálamo/fisiologia , Obesidade/fisiopatologia , Análise de Variância , Animais , Linhagem Celular , Imunofluorescência , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Immunoblotting , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Obesos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína X Associada a bcl-2/metabolismo
10.
Endocrinology ; 155(8): 2831-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24892821

RESUMO

In both human and experimental obesity, inflammatory damage to the hypothalamus plays an important role in the loss of the coordinated control of food intake and energy expenditure. Upon prolonged maintenance of increased body mass, the brain changes the defended set point of adiposity, and returning to normal weight becomes extremely difficult. Here we show that in prolonged but not in short-term obesity, the ubiquitin/proteasome system in the hypothalamus fails to maintain an adequate rate of protein recycling, leading to the accumulation of ubiquitinated proteins. This is accompanied by an increased colocalization of ubiquitin and p62 in the arcuate nucleus and reduced expression of autophagy markers in the hypothalamus. Genetic protection from obesity is accompanied by the normal regulation of the ubiquitin/proteasome system in the hypothalamus, whereas the inhibition of proteasome or p62 results in the acceleration of body mass gain in mice exposed for a short period to a high-fat diet. Thus, the defective regulation of the ubiquitin/proteasome system in the hypothalamus may be an important mechanism involved in the progression and autoperpetuation of obesity.


Assuntos
Hipotálamo/metabolismo , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Microglia/metabolismo , Neurônios/metabolismo , Fenótipo , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Aumento de Peso , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA