Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36297546

RESUMO

SARS-CoV-2 causes COVID-19, a predominantly pulmonary disease characterized by a burst of pro-inflammatory cytokines and an increase in free iron. The viral glycoprotein Spike mediates fusion to the host cell membrane, but its role as a virulence factor is largely unknown. Recently, the antiviral activity of lactoferrin against SARS-CoV-2 was demonstrated in vitro and shown to occur via binding to cell surface receptors, and its putative interaction with Spike was suggested by in silico analyses. We investigated the anti-SARS-CoV-2 activity of bovine and human lactoferrins in epithelial and macrophagic cells using a Spike-decorated pseudovirus. Lactoferrin inhibited pseudoviral fusion and counteracted the deleterious effects of Spike on iron and inflammatory homeostasis by restoring basal levels of iron-handling proteins and of proinflammatory cytokines IL-1ß and IL-6. Using pull-down assays, we experimentally proved for the first time that lactoferrin binds to Spike, immediately suggesting a mechanism for the observed effects. The contribution of transferrin receptor 1 to Spike-mediated cell fusion was also experimentally demonstrated. In silico analyses showed that lactoferrin interacts with transferrin receptor 1, suggesting a multifaceted mechanism of action for lactoferrin. Our results give hope for the use of bovine lactoferrin, already available as a nutraceutical, as an adjuvant to standard therapies in COVID-19.

2.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348646

RESUMO

The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.

3.
Cell Signal ; 65: 109461, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678680

RESUMO

Glioblastoma, the most lethal form of brain cancer, is characterized by fast growth, migration and invasion of the surrounding parenchyma, with epithelial-to-mesenchymal transition (EMT)-like process being mostly responsible for tumour spreading and dissemination. A number of actors, including cadherins, vimentin, transcriptional factors such as SNAIL, play critical roles in the EMT process. The interleukin (IL)-6/STAT3 axis has been related to enhanced glioblastoma's migration and invasion abilities as well. Here, we present data on the differential effects of native and iron-saturated bovine lactoferrin (bLf), an iron-chelating glycoprotein of the innate immune response, in inhibiting migration in a human glioblastoma cell line. Through a wound healing assay, we found that bLf was able to partially or completely hinder cell migration, depending on its iron saturation rate. At a molecular level, bLf down-regulated both SNAIL and vimentin expression, while inducing a notable increase in cadherins' levels and inhibiting IL-6/STAT3 axis. Again, these effects positively correlated to bLf iron-saturation state, with the Holo-form resulting more efficient than the native one. Overall, our data suggest that bLf could represent a novel and efficient adjuvant treatment for glioblastoma's standard therapeutic approaches.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/metabolismo , Interleucina-6/metabolismo , Ferro/metabolismo , Lactoferrina/farmacologia , Fator de Transcrição STAT3/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactoferrina/química , Lactoferrina/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima , Vimentina/metabolismo
4.
Front Immunol ; 8: 705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28663751

RESUMO

Human lactoferrin (hLf), an 80-kDa multifunctional iron-binding cationic glycoprotein, is constitutively secreted by exocrine glands and by neutrophils during inflammation. hLf is recognized as a key element in the host immune defense system. The in vitro and in vivo experiments are carried out with bovine Lf (bLf), which shares high sequence homology and identical functions with hLf, including anti-inflammatory activity. Here, in "pure" M1 human macrophages, obtained by stimulation with a mixture of 10 pg/ml LPS and 20 ng/ml IFN-γ, as well as in a more heterogeneous macrophage population, challenged with high-dose of LPS (1 µg/ml), the effect of bLf on the expression of the main proteins involved in iron and inflammatory homeostasis, namely ferroportin (Fpn), membrane-bound ceruloplasmin (Cp), cytosolic ferritin (Ftn), transferrin receptor 1, and cytokines has been investigated. The increase of IL-6 and IL-1ß cytokines, following the inflammatory treatments, is associated with both upregulation of cytosolic Ftn and downregulation of Fpn, membrane-bound Cp, and transferrin receptor 1. All these changes take part into intracellular iron overload, a very unsafe condition leading in vivo to higher host susceptibility to infections as well as iron deficiency in the blood and anemia of inflammation. It is, therefore, of utmost importance to counteract the persistence of the inflammatory status to rebalance iron levels between tissues/secretions and blood. Moreover, levels of the antiinflammatory cytokine IL-10 were increased in cells treated with high doses of LPS. Conversely, IL-10 decreased when the LPS/IFN-γ mix was used, suggesting that only the inflammation triggered by LPS high doses can switch on an anti-inflammatory response in our macrophagic model. Here, we demonstrate that bLf, when included in the culture medium, significantly reduced IL-6 and IL-1ß production and efficiently prevented the changes of Fpn, membrane-bound Cp, cytosolic Ftn, and transferrin receptor 1 in "pure" M1 macrophages, as well as in the more heterogeneous macrophage population. In addition, the decrease of IL-10 induced by the LPS/IFN-γ mix was counteracted by bovine lactoferrin. Several drugs capable of modulating macrophagic phenotypes are emerging as attractive molecules for treating inflammation, and in this sense, bovine lactoferrin is no exception.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA