Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429850

RESUMO

Selenium (Se) enrichment of Stevia rebaudiana Bertoni can serve a dual purpose, on the one hand to increase plant biomass and stress tolerance and on the other hand to produce Se fortified plant-based food. Foliar Se spraying (0, 6, 8, 10 mg/L selenate, 14 days) of Stevia plantlets resulted in slightly decreased stevioside and rebaudioside A concentrations, and it also caused significant increment in stem elongation, leaf number, and Se content, suggesting that foliar Se supplementation can be used as a biofortifying approach. Furthermore, Se slightly limited photosynthetic CO2 assimilation (AN, gsw, Ci/Ca), but exerted no significant effect on chlorophyll, carotenoid contents and on parameters associated with photosystem II (PSII) activity (FV/FM, F0, Y(NO)), indicating that Se causes no photodamage in PSII. Further results indicate that Se is able to activate PSI-cyclic electron flow independent protection mechanisms of the photosynthetic apparatus of Stevia plants. The applied Se activated superoxide dismutase (SOD) isoenzymes (MnSOD1, FeSOD1, FeSOD2, Cu/ZnSOD1, Cu/ZnSOD2) and down-regulated NADPH oxidase suggesting the Se-induced limitation of superoxide anion levels and consequent oxidative signalling in Stevia leaves. Additionally, the decrease in S-nitrosoglutathione reductase protein abundance and the intensification of protein tyrosine nitration indicate Se-triggered nitrosative signalling. Collectively, these results suggest that Se supplementation alters Stevia shoot morphology without significantly affecting biomass yield and photosynthesis, but increasing Se content and performing antioxidant effects, which indicates that foliar application of Se may be a promising method in Stevia cultivation.

2.
Plant Physiol Biochem ; 156: 345-356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002713

RESUMO

Although ethylene (ET) is an important participant in plant responses to salt stress, its role in the early period of acclimation, especially in the case of photosynthesis has not been revealed in detail. In this study, the effects of tolerable (100 mM) or lethal (250 mM) NaCl concentrations were investigated in hydroponically grown tomato (Solanum lycopersicum L. cv. Ailsa Craig) plants of different ET status, in wild type (WT) plants, in WT plants pre-treated with the ET generator 1-aminocyclopropane-1-carboxylic acid (ACC) and in ET insensitive, Never ripe (Nr/Nr) mutants for 1-, 6- and 24 h. In the leaves ACC treatment reduced the osmotic effect of salt stress, while Nr mutation enhanced not only osmotic but ionic component of salt stress at 100 mM NaCl. ET insensitivity caused greater decline in stomatal conductance and photosynthetic CO2 assimilation rate than in the controls under tolerable salt stress, but both ACC treatment and Nr mutation helped to maintain positive carbon assimilation under lethal salt stress after 24 h. Nr mutant leaves showed highly enhanced regulated non-photochemical quenching (NPQ) and therefore lower quantum yield of photosystem II (PSII), due to more intensive cyclic electron flow around photosystem I (CEF-PSI), which was further increased under high salinity. Exogenous ACC treatment lowered CEF-PSI and enhanced PSII photochemistry after 6 h of lethal salt stress. Controlling PSI photoinhibition, ET is suggested to be an important regulator of CEF-PSI and photoprotection under salt stress. Furthermore, the altered ET status could cause contrasting effects under different stress severity.


Assuntos
Aminoácidos Cíclicos/farmacologia , Etilenos/metabolismo , Fotossíntese , Estresse Salino , Solanum lycopersicum/fisiologia , Ácidos Carboxílicos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
3.
Plant Physiol Biochem ; 126: 74-85, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29505970

RESUMO

Ethylene proved to be an important modulator of salicylic acid (SA) signalling pathway. Since SA may regulate both the production and scavenging of hydrogen peroxide (H2O2), which show light-dependency, the aim of this study was to compare H2O2 metabolism in the leaves of SA-treated wild-type (WT) tomato (Solanum lycopersicum L. cv. Ailsa Craig) and in ethylene receptor Never-ripe (Nr) mutants grown in normal photoperiod or in prolonged darkness. H2O2 accumulation was higher in the WT than in the mutants in normal photoperiod after 1 mM SA treatment, while Nr leaves contained more H2O2 after light deprivation. The expression of certain superoxide dismutase (SOD) genes and activity of the enzyme followed the same tendency as H2O2, which was scavenged by different enzymes in the two genotypes. Catalase (CAT, EC 1.11.1.6) activity was inhibited by SA in WT, while the mutants maintained enhanced enzyme activity in the dark. Thus, in WT, CAT inhibition was the major component of the H2O2 accumulation elicited by 1 mM SA in a normal photoperiod, since the expression and/or activity of ascorbate (APX, EC 1.11.1.11) and guaiacol peroxidases (POD, EC 1.11.1.7) were induced in the leaves. The absence of APX and POD activation in mutant plants suggests that the regulation of these enzymes by SA needs functional ethylene signalling. While the block of ethylene perception in Nr mutants was overwritten in the transcription and activity of certain SOD and CAT isoenzymes during prolonged darkness, the low APX and POD activities led to H2O2 accumulation in these tissues.


Assuntos
Escuridão , Etilenos/metabolismo , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Fotoperíodo , Ácido Salicílico/farmacologia , Solanum lycopersicum/metabolismo , Catalase/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/biossíntese , Superóxido Dismutase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA