Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31747377

RESUMO

Background According to GLOBOCAN 2018, oral cancer was reported as the second highest cancer prevalent in India. Despite the several therapies available for oral cancer treatment, tumor recurrence and distant metastasis persist. This study investigates the anticancer potential of Persicaria odorata, commonly known as Vietnamese coriander, used widely in traditional systems of medicine for the treatment of inflammation, stomach ailments, tumors, etc. Methods The crude methanolic extract of P. odorata (MPo) was prepared. The anticancer properties of MPo on SAS cells and other human oral squamous cell carcinoma cell line were evaluated using in vitro experimental conditions. The phytochemical constituents present in the MPo were also determined. Results Persicaria odorata possesses antiproliferative, antisurvival, antimetastatic activities, and induced cell cycle arrest in the G2 phase. It inhibited Akt-mammalian target of rapamycin (mTOR) signaling pathway and also downregulated the expression of essential proteins that are involved in tumorigenesis such as cyclin D1, cyclooxygenase 2 (COX2), survivin, matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A). Moreover, the presence of flavonoids and quinones also revealed the anticancer activity of the plant. Conclusion Overall, our study concludes that P. odorata exhibits its anticancer properties through the downregulation of Akt/mTOR signaling pathway in a dose-dependent manner.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Coriandrum/química , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fase G2/efeitos dos fármacos , Humanos , Índia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vietnã
2.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443458

RESUMO

Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson's disease, Alzheimer's, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.


Assuntos
Triterpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Doença Crônica/tratamento farmacológico , Humanos , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Triterpenos/administração & dosagem , Triterpenos/química , Triterpenos/farmacocinética
3.
Expert Opin Drug Metab Toxicol ; 15(9): 705-733, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31361978

RESUMO

Introduction: Since ancient times, turmeric has been used in several folklore remedies against various ailments. The principal component of turmeric is curcumin and its efficacy has been advocated in various in vitro, in vivo and clinical studies for different chronic diseases. However, some studies suggest that curcumin bioavailability is a major problem. Areas covered: This article discusses over 200 clinical studies with curcumin that have demonstrated the pronounced protective role of this compound against cardiovascular diseases, inflammatory diseases, metabolic diseases, neurological diseases, skin diseases, liver diseases, various types of cancer, etc. The review also describes the combination of curcumin with many natural and synthetic compounds as well as various formulations of curcumin that have shown efficacy in multiple clinical studies. Expert opinion: The therapeutic potential of curcumin, as demonstrated by clinical trials has overpowered the myth that poor bioavailability of curcumin poses a problem. Low curcumin bioavailability in certain studies has been addressed by using higher concentrations of curcumin within nontoxic limits. Moreover, curcumin, in combination with other compounds or as formulations, has shown enhanced bioavailability. Hence, bioavailability is not a problem in the curcumin-mediated treatment of chronic diseases. Therefore, this golden nutraceutical presents a safe, low-cost and effective treatment modality for different chronic diseases.


Assuntos
Curcuma/química , Curcumina/administração & dosagem , Suplementos Nutricionais , Animais , Disponibilidade Biológica , Doença Crônica , Ensaios Clínicos como Assunto , Curcumina/farmacocinética , Humanos
4.
Exp Biol Med (Maywood) ; 244(8): 663-689, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30961357

RESUMO

IMPACT STATEMENT: The success rate for cancer drugs which enter into phase 1 clinical trials is utterly less. Why the vast majority of drugs fail is not understood but suggests that pre-clinical studies are not adequate for human diseases. In 1975, as per the Tufts Center for the Study of Drug Development, pharmaceutical industries expended 100 million dollars for research and development of the average FDA approved drug. By 2005, this figure had more than quadrupled, to $1.3 billion. In order to recover their high and risky investment cost, pharmaceutical companies charge more for their products. However, there exists no correlation between drug development cost and actual sale of the drug. This high drug development cost could be due to the reason that all patients might not respond to the drug. Hence, a given drug has to be tested in large number of patients to show drug benefits and obtain significant results.


Assuntos
Antineoplásicos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/economia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Países em Desenvolvimento , Aprovação de Drogas , Custos de Medicamentos , Desenho de Fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Genoma Humano , Humanos , Mutação , Neoplasias/economia , Neoplasias/epidemiologia , Neoplasias/genética , Medicina de Precisão/tendências , Prevenção Primária , Modelos de Riscos Proporcionais , Terapia de Relaxamento , Especificidade da Espécie , Análise de Sobrevida , Estados Unidos , United States Food and Drug Administration
5.
Pharmacol Res ; 144: 192-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002949

RESUMO

In spite of billions of dollars expended on cancer research every year, the incidence rate and the mortality rate due to this widespread disease has increased drastically over the last few decades. Recent reports from the World Health Organization advocate that overall global cancer burden and deaths due to cancer are expected to double by the next decade. Synthetic drugs developed as chemotherapeutics have repeatedly shown adverse side effects and development of chemoresistance. Cancer is basically a multifactorial disease that necessitates the modulation of multiple targets and oncogenic signaling pathways. Honokiol (C18H18O2) is a biphenolic natural compound isolated from the leaves and barks of Magnolia plant species and has been extensively studied for its beneficial effects against several chronic diseases. Honokiol is capable of efficiently preventing the growth of wide variety of tumors such as those of brain, breast, cervical, colon, liver, lung, prostate, skin, and hematological malignancies. Recent work has shown that this phytochemical can modulate various molecular targets such as activation of pro-apoptotic factors, suppression of anti-apoptotic proteins and different transcription factors, downregulation of various enzymes, chemokines, cell surface adhesion molecules, and cell cycle proteins, and inhibition of activity of protein tyrosine kinases and serine/threonine kinases. Because of its pharmacological safety, honokiol can either be used alone or in combination with other chemotherapeutic drugs for the prevention and treatment of cancer. The current review describes in detail the various reports supporting these anti-cancer studies documented with this promising agent.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Lignanas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Humanos , Lignanas/química , Lignanas/farmacologia , Magnolia/química , Terapia de Alvo Molecular , Neoplasias/prevenção & controle
6.
Pharmacol Res ; 133: 53-64, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729421

RESUMO

The intake of fruits has proven to reduce the risk and incidence of cancer worldwide and plays a crucial role in cancer prevention. Pomegranate (Punica granatum), which belongs to the Punicaceae family, is one such plant that contains beneficial nutrients as well as many bioactive components and important phytochemicals that can be attributed to cancer-related therapeutic purposes. Pomegranate possesses antioxidant, anti-inflammatory, anti-proliferative, anti-angiogenic, anti-invasive, and anti-metastatic properties, and induces apoptosis. It also down-regulates various signaling pathways such as NF-κB, PI3K/AKT/mTOR, and Wnt, and down-regulates the expression of genes that are responsible in cancer development, such as anti-apoptotic genes, MMPs, VEGF, c-met, cyclins, Cdks, and pro-inflammatory cytokines. Therefore, inclusion of the fruit in one's diet would assist in a healthy life protected from cancer and also act as an effective chemotherapeutic with no toxic side effects.


Assuntos
Antineoplásicos/uso terapêutico , Lythraceae , Neoplasias/tratamento farmacológico , Fitoterapia , Preparações de Plantas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Humanos , Preparações de Plantas/farmacologia
7.
Cancer Lett ; 416: 75-86, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246645

RESUMO

Natural compounds have enormous biological and clinical activity against dreadful diseases such as cancer, as well as cardiovascular and neurodegenerative disorders. In spite of the widespread research carried out in the field of cancer therapeutics, cancer is one of the most prevalent diseases with no perfect treatment till date. Adverse side effects and the development of chemoresistance are the imperative limiting factors associated with conventional chemotherapeutics. For this reason, there is an urgent need to find compounds that are highly safe and efficacious for the prevention and treatment of cancer. Gambogic acid (GA) is a xanthone structure extracted from the dry, brownish gamboge resin secreted from the Garcinia hanburyi tree in Southeast Asia and has inherent anti-cancer properties. In this review, the molecular mechanisms underlying the targets of GA that are liable for its effective anti-cancer activity are discussed that reveal the potential of GA as a pertinent candidate that can be appropriately developed and designed into a capable anti-cancer drug.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Xantonas/uso terapêutico , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Garcinia/química , Humanos , Modelos Biológicos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Xantonas/química
8.
Phytomedicine ; 25: 118-127, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28190465

RESUMO

BACKGROUND: The risk of suffering from many chronic diseases seems to have made no improvement despite the advancement in medications available in the modern world. Moreover, the use of synthetic chemicals as medications has proved to worsen the scenario due to the various adverse side effects associated with them. PURPOSE: Extensive research on natural medicines provides ample evidence on the safety and efficacy of phytochemicals and nutraceuticals against diverse chronic ailments. Therefore, it is advisable to use natural products in the management of such diseases. This article aims to present a comprehensive and critical review of known pharmacological and biological effects of butein, an important chalcone polyphenol first isolated from Rhus verniciflua Stokes, implicated in the prevention and treatment of various chronic disease conditions. METHODS: An extensive literature search was conducted using PubMed, ScienceDirect, Scopus and Web of ScienceTM core collections using key words followed by evaluation of the bibliographies of relevant articles. RESULTS: Butein has been preclinically proven to be effective against several chronic diseases because it possesses a wide range of biological properties, including antioxidant, anti-inflammatory, anticancer, antidiabetic, hypotensive and neuroprotective effects. Furthermore, it has been shown to affect multiple molecular targets, including the master transcription factor nuclear factor-κB and its downstream molecules. Moreover, since it acts on multiple pathways, the chances of non-responsiveness and resistance development is reduced, supporting the use of butein as a preferred treatment option. CONCLUSION: Based on numerous preclinical studies, butein shows significant therapeutic potential against various diseases. Nevertheless, well-designed clinical studies are urgently needed to validate the preclinical findings.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Chalconas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Hipertensivos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Humanos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fitoterapia , Extratos Vegetais/uso terapêutico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Rhus/química
9.
Br J Pharmacol ; 174(11): 1325-1348, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27638428

RESUMO

Curcumin, a yellow pigment in the Indian spice Turmeric (Curcuma longa), which is chemically known as diferuloylmethane, was first isolated exactly two centuries ago in 1815 by two German Scientists, Vogel and Pelletier. However, according to the pubmed database, the first study on its biological activity as an antibacterial agent was published in 1949 in Nature and the first clinical trial was reported in The Lancet in 1937. Although the current database indicates almost 9000 publications on curcumin, until 1990 there were less than 100 papers published on this nutraceutical. At the molecular level, this multitargeted agent has been shown to exhibit anti-inflammatory activity through the suppression of numerous cell signalling pathways including NF-κB, STAT3, Nrf2, ROS and COX-2. Numerous studies have indicated that curcumin is a highly potent antimicrobial agent and has been shown to be active against various chronic diseases including various types of cancers, diabetes, obesity, cardiovascular, pulmonary, neurological and autoimmune diseases. Furthermore, this compound has also been shown to be synergistic with other nutraceuticals such as resveratrol, piperine, catechins, quercetin and genistein. To date, over 100 different clinical trials have been completed with curcumin, which clearly show its safety, tolerability and its effectiveness against various chronic diseases in humans. However, more clinical trials in different populations are necessary to prove its potential against different chronic diseases in humans. This review's primary focus is on lessons learnt about curcumin from clinical trials. LINKED ARTICLES: This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.


Assuntos
Curcuma/química , Curcumina/farmacologia , Suplementos Nutricionais , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Doença Crônica , Curcumina/efeitos adversos , Curcumina/isolamento & purificação , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-26537958

RESUMO

BACKGROUND: Research over the past several years has developed many mono-targeted therapies for the prevention and treatment of cancer, but it still remains one of the fatal diseases in the world killing 8.2 million people annually. It has been well-established that development of chemoresistance in cancer cells against mono-targeted chemotherapeutic agents by modulation of multiple survival pathways is the major cause of failure of cancer chemotherapy. Therefore, inhibition of these pathways by non-toxic multi-targeted agents may have profoundly high potential in preventing drug resistance and sensitizing cancer cells to chemotherapeutic agents. OBJECTIVE: To study the potential of curcumin, a multi-targeted natural compound, obtained from the plant Turmeric (Curcuma longa) in combination with standard chemotherapeutic agents to inhibit drug resistance and sensitize cancer cells to these agents based on available literature and patents. METHOD: An extensive literature survey was performed in PubMed and Google for the chemosensitizing potential of curcumin in different cancers published so far and the patents published during 2014-2015. RESULT: Our search resulted in many in vitro, in vivo and clinical reports signifying the chemosensitizing potential of curcumin in diverse cancers. There were 160 in vitro studies, 62 in vivo studies and 5 clinical studies. Moreover, 11 studies reported on hybrid curcumin: the next generation of curcumin based therapeutics. Also, 34 patents on curcumin's biological activity have been retrieved. CONCLUSION: Altogether, the present study reveals the enormous potential of curcumin, a natural, non-toxic, multi-targeted agent in overcoming drug resistance in cancer cells and sensitizing them to chemotherapeutic drugs.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/metabolismo , Curcumina/administração & dosagem , Curcumina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Patentes como Assunto , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
11.
Phytomedicine ; 22(13): 1163-71, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26598915

RESUMO

BACKGROUND: Despite the major advances made in the field of cancer biology, it still remains one of the most fatal diseases in the world. It is now well established that natural products are safe and efficacious and have high potential in the prevention and treatment of different diseases including cancer. Butein is one such compound which is now found to have anti-cancer properties against various malignancies. PURPOSE: To thoroughly review the literature available on the anti-cancer properties of butein against different cancers and its molecular targets. METHODS: A thorough literature search has been done in PubMed for butein, its biological activities especially cancer and its molecular targets. RESULTS: Our search retrieved several reports on the various biological activities of butein in which around 43 articles reported that butein shows potential anti-proliferative effect against a wide range of neoplasms and the molecular target varies with cancer types. Most often it targets NF-κB and its downstream pathways. In addition, butein induces the expression of genes which mediate the cell death and apoptosis in cancer cells. It also inhibits tumor angiogenesis, invasion and metastasis in prostate, liver and bladder cancers through the inhibition of MMPs, VEGF etc. Moreover, it inhibits the overexpression of several proteins and enzymes such as STAT3, ERK, CXCR4, COX-2, Akt, EGFR, Ras etc. involved in tumorigenesis. CONCLUSION: Collectively, all these findings suggest the enormous potential and efficacy of butein as a multitargeted chemotherapeutic, chemopreventive and chemosensitizing agent against a wide range of cancers with minimal or no adverse side effects.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Estrutura Molecular , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA