Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ageing Res Rev ; 92: 102122, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956927

RESUMO

Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.


Assuntos
Envelhecimento , Rigidez Vascular , Humanos , Envelhecimento/metabolismo , Estresse Oxidativo , Senescência Celular , Transdução de Sinais
2.
J Biol Chem ; 278(28): 25933-9, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12714588

RESUMO

Protein ectodomain shedding is a specialized type of regulated proteolysis that releases the extracellular domain of transmembrane proteins. The metalloprotease disintegrin tumor necrosis factor-alpha-converting enzyme (TACE) has been convincingly shown to play a central role in ectodomain shedding, but despite its broad interest, very little is known about the mechanisms that regulate its activity. An analysis of the biosynthesis of TACE in mutant cell lines that have a gross defect in ectodomain shedding (M1 and M2) shows a defective removal of the prodomain that keeps TACE in an inactive form. Using LoVo, a cell line that lacks of active furin, and alpha1-Antitrypsin Portland, a protein inhibitor of proprotein convertases, we show that TACE is normally processed by furin and other proprotein convertases. The defect in M1 and M2 cells is due to a blockade of the exit of TACE from the endoplasmic reticulum. The processing of other zinc-dependent metalloproteases, previously suggested to participate in activated ectodomain shedding is normal in the mutant cells, indicating that the component mutated is highly specific for TACE. In summary, the characterization of shedding-defective somatic cell mutants unveils the existence of a specific mechanism that directs the proteolytic activation of TACE through the control of its exit from the ER.


Assuntos
Metaloendopeptidases/metabolismo , Mutação , Fator de Necrose Tumoral alfa/metabolismo , Proteínas ADAM , Proteína ADAM17 , Animais , Biotinilação , Western Blotting , Células CHO , Linhagem Celular , Cricetinae , DNA Complementar/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Glicoproteínas/química , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Testes de Precipitina , Estrutura Terciária de Proteína , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fator de Crescimento Transformador alfa/metabolismo , Células Tumorais Cultivadas , Zinco/metabolismo , alfa 1-Antitripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA