Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Commun ; 15(1): 2769, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553486

RESUMO

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present. We then tested the hypothesis that individuals with ASD harbor a microbiota that might differentially influence GI health by performing microbiota transplantation studies into male germfree animals, followed by induction of colitis. Animals that harbor a microbiota from ASD individuals have worsened gut phenotypes when compared to animals colonized with microbiotas from familial neurotypical (NT) controls. We identify the enrichment of Blautia species in all familial NT controls and observe an association between elevated abundance of Bacteroides uniformis and reductions in intestinal injury. Oral treatment with either of these microbes reduces colon injury in mice. Finally, provision of a Blautia isolate from a NT control ameliorates gut injury-associated active social engagement in mice. Collectively, our data demonstrate that past intestinal distress is associated with changes in active social behavior in mice that can be ameliorated by supplementation of members of the human microbiota.


Assuntos
Transtorno do Espectro Autista , Colite , Gastroenteropatias , Microbiota , Humanos , Masculino , Camundongos , Animais , Transtorno do Espectro Autista/terapia , Participação Social , Colite/terapia , Suplementos Nutricionais
2.
Psychopharmacology (Berl) ; 240(6): 1359-1372, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37129616

RESUMO

RATIONALE: The prepulse inhibition (PPI) of the startle reflex is the best-established index of sensorimotor gating. We documented that the neurosteroid allopregnanolone (AP) is necessary to reduce PPI in response to D1 dopamine receptor agonists. Since Sprague-Dawley (SD) rats are poorly sensitive to the PPI-disrupting effects of these drugs, we hypothesized that AP might increase this susceptibility. OBJECTIVES: We tested whether AP is sufficient to increase the vulnerability of SD rats to PPI deficits in response to the D1 receptor full agonist SKF82958. METHODS: SD rats were tested for PPI after treatment with SKF82958 (0.05-0.3 mg/kg, SC) in combination with either intraperitoneal (1-10 mg/kg) or intracerebral (0.5 µg/µl/side) AP administration into the medial prefrontal cortex (mPFC) or nucleus accumbens shell. To rule out potential confounds, we measured whether SKF82958 affected the endogenous mPFC levels of AP. RESULTS: SD rats exhibited marked PPI deficits in response to the combination of systemic and intra-mPFC AP with SKF82958 but not with the D2 receptor agonist quinpirole (0.3-0.6 mg/kg, SC). SKF82958 did not elevate mPFC levels of AP but enhanced the content of its precursor progesterone. The PPI deficits caused by SKF82958 in combination with AP were opposed by the AP antagonist isoallopregnanolone (10 mg/kg, IP) and the glutamate NMDA receptor positive modulator CIQ (5 mg/kg, IP). CONCLUSION: These results suggest that AP enables the detrimental effects of D1 receptor activation on sensorimotor gating. AP antagonism or glutamatergic modulation counters these effects and may have therapeutic potential for neuropsychiatric disorders characterized by gating deficits.


Assuntos
Pregnanolona , Receptores de Dopamina D1 , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Pregnanolona/farmacologia , Benzazepinas/farmacologia , Reflexo de Sobressalto , Filtro Sensorial , Estimulação Acústica/métodos
3.
Neuropharmacology ; 147: 55-65, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907425

RESUMO

Steroids exert a profound influence on behavioral reactivity, by modulating the functions of most neurotransmitters and shaping the impact of stress and sex-related variables on neural processes. This background - as well as the observation that most neuroactive steroids (including sex hormones, glucocorticoids and neurosteroids) are synthetized and metabolized by overlapping enzymatic machineries - points to steroidogenic pathways as a powerful source of targets for neuropsychiatric disorders. Inhibitors of steroidogenic enzymes have been developed and approved for a broad range of genitourinary and endocrine dysfunctions, opening to new opportunities to repurpose these drugs for the treatment of mental problems. In line with this idea, preliminary clinical and preclinical results from our group have shown that inhibitors of key steroidogenic enzymes, such as 5α-reductase and 17,20 desmolase-lyase, may have therapeutic efficacy in specific behavioral disorders associated with dopaminergic hyperfunction. While the lack of specificity of these effects raises potential concerns about endocrine adverse events, these initial findings suggest that steroidogenesis modulators with greater brain specificity may hold significant potential for the development of alternative therapies for psychiatric problems. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.


Assuntos
Reposicionamento de Medicamentos , Transtornos Mentais/tratamento farmacológico , Inibidores da Síntese de Esteroides/farmacologia , Esteroides/antagonistas & inibidores , Inibidores de 5-alfa Redutase/farmacologia , Animais , Humanos , Transtornos Mentais/enzimologia , Transtornos Mentais/metabolismo , Neurotransmissores/farmacologia , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Esteroides/biossíntese , Esteroides/metabolismo
4.
Neuropsychopharmacology ; 42(11): 2196-2205, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28102229

RESUMO

Acute sleep deprivation (SD) can trigger or exacerbate psychosis- and mania-related symptoms; the neurobiological basis of these complications, however, remains elusive. Given the extensive involvement of neuroactive steroids in psychopathology, we hypothesized that the behavioral complications of SD may be contributed by 5α-reductase (5αR), the rate-limiting enzyme in the conversion of progesterone into the neurosteroid allopregnanolone. We first tested whether rats exposed to SD may exhibit brain-regional alterations in 5αR isoenzymes and neuroactive steroid levels; then, we assessed whether the behavioral and neuroendocrine alterations induced by SD may be differentially modulated by the administration of the 5αR inhibitor finasteride, as well as progesterone and allopregnanolone. SD selectively enhanced 5αR expression and activity, as well as AP levels, in the prefrontal cortex; furthermore, finasteride (10-100 mg/kg, IP) dose-dependently ameliorated PPI deficits, hyperactivity, and risk-taking behaviors, in a fashion akin to the antipsychotic haloperidol and the mood stabilizer lithium carbonate. Finally, PPI deficits were exacerbated by allopregnanolone (10 mg/kg, IP) and attenuated by progesterone (30 mg/kg, IP) in SD-subjected, but not control rats. Collectively, these results provide the first-ever evidence that 5αR mediates a number of psychosis- and mania-like complications of SD through imbalances in cortical levels of neuroactive steroids.


Assuntos
Encéfalo/metabolismo , Colestenona 5 alfa-Redutase/metabolismo , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/patologia , Privação do Sono/complicações , Esteroides/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Inibidores de 5-alfa Redutase/uso terapêutico , Estimulação Acústica/efeitos adversos , Animais , Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Finasterida/farmacologia , Finasterida/uso terapêutico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Pregnanolona/farmacologia , Transtornos Psicóticos/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos
5.
Eur Neuropsychopharmacol ; 24(6): 974-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24630433

RESUMO

Cannabis abuse in adolescence is associated with a broad array of phenotypical consequences, including a higher risk for schizophrenia and other mental disturbances related to dopamine (DA) imbalances. The great variability of these sequelae likely depends on the key influence of diverse genetic vulnerability factors. Inbred rodent strains afford a highly informative tool to study the contribution of genetic determinants to the long-term effects of juvenile cannabinoid exposure. In this study, we analyzed the phenotypical impact of the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 2mg/kg/day from postnatal day 35-48) in adolescent Lewis rats, an inbred strain exhibiting resistance to psychotomimetic effects of environmental manipulations. At the end of this treatment, WIN-injected animals displayed increased survival of new cells (mainly oligodendroglia precursors) in the striatum and prefrontal cortex (PFC), two key terminal fields of DAergic pathways. To test whether these changes may be associated with enduring behavioral alterations, we examined the consequences of adolescent WIN treatment in adulthood (postnatal days 60-70), with respect to DA levels and metabolism as well as multiple behavioral paradigms. Rats injected with WIN exhibited increased turnover, but not levels, of striatal DA. In addition, cannabinoid-treated animals displayed increases in acoustic startle latency and novel-object exploration; however, WIN treatment failed to induce overt deficits of sensorimotor gating and social interaction. These results indicate that, in Lewis rats, juvenile cannabinoid exposure leads to alterations in frontostriatal gliogenesis, as well as select behavioral alterations time-locked to high DAergic metabolism, but not overt schizophrenia-related deficits.


Assuntos
Canabinoides/efeitos adversos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/crescimento & desenvolvimento , Neuroglia/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Benzoxazinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neuroglia/patologia , Neuroglia/fisiologia , Fenótipo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Ratos Endogâmicos Lew , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Comportamento Social
6.
Alcohol Clin Exp Res ; 37(1): 8-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22671690

RESUMO

Alcohol abuse and dependence have a staggering socioeconomic impact, yet current therapeutic strategies are largely inadequate to treat these disorders. Thus, the development of new strategies that can effectively prevent alcohol use disorders (AUDs) is of paramount importance. Currently approved medications attempt to deter alcohol intake by blocking ethanol metabolism or by targeting the neurochemical systems downstream of the cascades leading to craving and dependence. Unfortunately, these medications have provided only limited success as indicated by the continued high rates of alcohol abuse and alcoholism. The lack of currently available effective treatment strategies is highlighted by the urgent call by the NIAAA to find new and paradigm-changing therapeutics to either prevent or treat alcohol-related problems. This mini-review highlights recent findings from 4 laboratories with a focus on compounds that have the potential to be novel therapeutic agents that can be developed for the prevention and/or treatment of AUDs.


Assuntos
Transtornos Induzidos por Álcool/tratamento farmacológico , Fármacos do Sistema Nervoso Central/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/efeitos dos fármacos , Transtornos Induzidos por Álcool/prevenção & controle , Animais , Antiparasitários/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Medicina Herbária , Humanos , Ivermectina/farmacologia , Terapia de Alvo Molecular , Preparações de Plantas/farmacologia
7.
Eur Neuropsychopharmacol ; 23(10): 1329-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23141373

RESUMO

The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) exerts a multifaceted function in the modulation of information processing, through the activation of multiple receptor families. In particular, stimulation of 5-HT(1A) and 5-HT(2A) receptors leads to sensorimotor gating impairments and perceptual perturbations. Previous evidence has shown that chronic deprivation of L-tryptophan (TRP), the precursor of 5-HT, results in marked reductions of 5-HT brain levels, as well as neuroplastic alterations in 5-HT(1A) and 5-HT(2A) expression and/or signaling. Building on these premises, in the present study we tested whether a prolonged TRP deprivation may differentially impact the roles of these receptors in the regulation of the prepulse inhibition (PPI) of the acoustic startle reflex, a dependable index of gating. Male Sprague-Dawley rats were fed for 14 days with either a regimen with negligible TRP content (TR-) or the same diet supplemented of TRP (TR+). At the end of this schedule, rats were treated with the prototypical 5-HT(1A) receptor agonist 8-OH-DPAT (62.5-250 µg/kg, subcutaneous, s.c.) or the 5-HT2 receptor agonist DOI (0.25-1 mg/kg, s.c.). Notably, the PPI deficits induced by 8-OH-DPAT in TR- rats were significantly milder than those observed in their TR+ counterparts; these effects were fully prevented by the 5-HT(1A) antagonist WAY-100135 (10 mg/kg, intraperitoneal). Conversely, TRP deprivation did not affect the PPI-disrupting properties of DOI. These findings suggest that prolonged 5-HT depletion attenuates the influence of 5-HT(1A), but not 5-HT2 receptors on sensorimotor gating, confirming the distinct mechanisms of these two targets in PPI regulation.


Assuntos
Discinesia Induzida por Medicamentos/dietoterapia , Transtornos Neurológicos da Marcha/dietoterapia , Receptor 5-HT1A de Serotonina/metabolismo , Filtro Sensorial/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/toxicidade , Triptofano/deficiência , Estimulação Acústica , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Neurológicos da Marcha/induzido quimicamente , Masculino , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/química , Receptores 5-HT2 de Serotonina/química , Receptores 5-HT2 de Serotonina/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/toxicidade , Triptofano/antagonistas & inibidores
8.
Recent Pat CNS Drug Discov ; 7(1): 25-40, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22280339

RESUMO

Rich evidence has shown that cannabis products exert a broad gamut of effects on emotional regulation. The main psychoactive ingredient of hemp, Δ9-tetrahydrocannabinol (THC), and its synthetic cannabinoid analogs have been reported to either attenuate or exacerbate anxiety and fear-related behaviors in humans and experimental animals. The heterogeneity of cannabis-induced psychological outcomes reflects a complex network of molecular interactions between the key neurobiological substrates of anxiety and fear and the endogenous cannabinoid system, mainly consisting of the arachidonic acid derivatives anandamide and 2-arachidonoylglycerol (2-AG) and two receptors, respectively termed CB1 and CB2. The high degree of interindividual variability in the responses to cannabis is contributed by a wide spectrum of factors, including genetic and environmental determinants, as well as differences in the relative concentrations of THC and other alkaloids (such as cannabidiol) within the plant itself. The present article reviews the currently available knowledge on the herbal, synthetic and endogenous cannabinoids with respect to the modulation of anxiety responses, and highlights the challenges that should be overcome to harness the therapeutic potential of some of these compounds, all the while limiting the side effects associated with cannabis consumption. In addition the article presents some promising patents on cannabinoid-related agents.


Assuntos
Ansiolíticos/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Canabinoides/uso terapêutico , Animais , Ansiolíticos/farmacologia , Canabinoides/farmacologia , Humanos
9.
Epilepsy Res ; 90(3): 300-3, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20558041

RESUMO

Mirror focus (MF) is a cortical epileptogenic lesion that is posited to develop in the contralateral site to a cortical primary focus (PF) by secondary epileptogenic mechanisms. Previous animal evidence supports the implication of gamma-aminobutyric acid (GABA) in this phenomenon, but this contention has not yet been substantiated by clinical findings. Here we report for the first time clinical evidence suggesting the involvement of GABAergic cortical transmission in MF pathogenesis, in a 37-year-old man affected by a lesional PF in the right frontal lobe and a homotopic MF in the contralateral hemisphere, triggered by hyperventilation. One year after surgical excision of the PF, the electric activity of the MF remained unchanged, but was accompanied by a significant increase in the density of GABA(A)/benzodiazepine receptor binding in the left frontal lobe, as measured by (123)I-Iomazenil SPECT. These results extend previous evidence on the involvement of GABAergic signaling in MF pathophysiology.


Assuntos
Epilepsia do Lobo Frontal/metabolismo , Lobo Frontal/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adulto , Eletroencefalografia , Epilepsia do Lobo Frontal/cirurgia , Lobo Frontal/cirurgia , Humanos , Masculino , Receptores de GABA-A/metabolismo , Resultado do Tratamento
10.
J Psychiatr Res ; 44(14): 944-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20378129

RESUMO

Cannabis is the most common secondary illicit substance in methamphetamine (METH) users, yet the outcomes of the concurrent consumption of both substances remain elusive. Capitalizing on recent findings on the implication of CB1 cannabinoid receptors in the behavioral effects of METH, we hypothesized that METH-induced neurotoxicity may alter the brain expression of CB1, thereby affecting its role in behavioral functions. To test this possibility, we subjected rats to a well-characterized model of METH neurotoxicity (4 mg/kg, subcutaneous × 4 injections, 2 h apart), and analyzed their CB1 receptor brain expression three weeks later. METH exposure resulted in significant enhancements of CB1 receptor expression across several brain regions, including prefrontal cortex, caudate-putamen, basolateral amygdala, CA1 hippocampal region and perirhinal cortex. In parallel, a different group of METH-exposed rats was used to explore the responsiveness to the potent cannabinoid agonist WIN 55,212-2 (WIN) (0.5-1 mg/kg, intraperitoneal), within several paradigms for the assessment of emotional and cognitive functions, such as open field, object exploration and recognition, and startle reflex. WIN induced anxiolytic-like effects in METH-exposed rats and anxiogenic-like effects in saline-treated controls. Furthermore, METH-exposed animals exhibited a significantly lower impact of WIN on the attenuation of exploratory behaviors and short-term (90 min) recognition memory. Conversely, METH neurotoxicity did not significantly affect WIN-induced reductions in locomotor activity, exploration time and acoustic startle. These results suggest that METH neurotoxicity may alter the vulnerability to select behavioral effects of cannabis, by inducing distinct regional variations in the expression of CB1 receptors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/psicologia , Receptor CB1 de Canabinoide/metabolismo , Estimulação Acústica/métodos , Tonsila do Cerebelo/metabolismo , Animais , Benzoxazinas/administração & dosagem , Benzoxazinas/farmacologia , Encéfalo/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Agonistas de Receptores de Canabinoides , Núcleo Caudado/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Metanfetamina , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Atividade Motora/efeitos dos fármacos , Naftalenos/administração & dosagem , Naftalenos/farmacologia , Córtex Pré-Frontal/metabolismo , Putamen/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Int J Neuropsychopharmacol ; 11(7): 947-55, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18477413

RESUMO

Sleep deprivation (SD) is known to induce perceptual impairments, ranging from perceptual distortion to hallucinatory states. Although this phenomenon has been extensively described in the literature, its neurobiological underpinnings remain elusive. In rodents, SD induces a series of behavioural patterns that might be reflective of psychosis and mania, such as hyperlocomotion and sensitization to psychotogenic drugs. Notably, such changes are accompanied by transitory alterations of dopaminergic signalling. Based on the hypothesis that both psychotic and manic disorders reflect gating impairments, the present study was aimed at the assessment of the impact of SD on the behavioural model of prepulse inhibition (PPI) of the startle reflex, a reliable paradigm for the study of informational filtering. Rats subjected to SD (24 h, 48 h, 72 h) exhibited a time-dependent increase in startle reflex and a dramatic deficit in PPI. Both alterations were reversed 24 h after termination of the SD period. Interestingly, PPI disruption was efficiently prevented by haloperidol (0.1 mg/kg i.p.) clozapine (5 mg/kg i.p.) and risperidone (1 mg/kg i.p.). Conversely, neither the anxiolytic diazepam (5 mg/kg i.p.) nor the antidepressant citalopram (5 mg/kg i.p) affected the PPI disruption mediated by SD, although diazepam reversed the enhancement in startle reflex magnitude induced by this manipulation. Our data suggest that SD induces gating deficits that might be relevant to the hallucinatory phenomena observed in humans, and provide a novel reliable animal model where such relationship can be studied.


Assuntos
Antipsicóticos/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Privação do Sono/psicologia , Estimulação Acústica , Animais , Citalopram/farmacologia , Interpretação Estatística de Dados , Diazepam/farmacologia , Hipnóticos e Sedativos/farmacologia , Masculino , Músculo Esquelético/fisiologia , Ratos , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sono REM/efeitos dos fármacos
12.
Psychopharmacology (Berl) ; 198(2): 191-200, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18330544

RESUMO

RATIONALE: Serotonin (5-HT) plays a key role in the pathophysiology of psychotic disorders, presumably through a modulation of dopamine (DA) transmission. Reduction of 5-HT signaling has been suggested to enhance dopaminergic responses in animal models of psychosis. An intriguing naturalistic strategy to reduce 5-HT brain content is afforded by the dietary restriction to its precursor, l-tryptophan (TRP). OBJECTIVE: We investigated the impact of a TRP-deficient diet in rats on the prepulse inhibition of the startle (PPI), a measure of sensorimotor gating which is typically impaired by psychotomimetic substances. MATERIALS AND METHODS: After either short-term (6 h) or long-term (14 days) TRP deprivation, rats were tested for startle reflex and PPI. Moreover, we assessed the impact of both TRP deprivation regimens on PPI reduction induced by the psychotomimetic substance d-amphetamine (AMPH). RESULTS: Both TRP-deficient regimens failed to significantly affect PPI responses. However, chronic, but not short-term, TRP-deficient diet induced a significant sensitization to the effects of AMPH (1.25-2.5 mg/kg, subcutaneous). The enhanced predisposition to PPI disruption elicited by prolonged TRP deprivation was completely reversed 24 h after reinstatement of TRP in the diet, as well as pretreatment with antipsychotic drugs haloperidol (0.1 mg/kg, intraperitoneal) and clozapine (5 mg/kg, intraperitoneal), which exert their therapeutic action mostly through blockade of DA D(2) receptors. CONCLUSIONS: The present results confirm and extend previous findings on the impact of serotonergic signaling in the modulation of DA transmission in schizophrenia and point to chronic TRP deprivation as a potential model of environmental manipulation that may produce a sensitization to psychotic-like symptoms induced by dopaminergic activation.


Assuntos
Reflexo de Sobressalto/fisiologia , Triptofano/deficiência , Estimulação Acústica , Aminoácidos/análise , Aminoácidos/farmacologia , Anfetamina/farmacologia , Animais , Antipsicóticos/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Clozapina/farmacologia , Interpretação Estatística de Dados , Dieta , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Ingestão de Alimentos , Farinha/análise , Haloperidol/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Zea mays/química
13.
Neuropsychopharmacology ; 32(2): 320-31, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16794573

RESUMO

The anticonvulsant topiramate (TPM) has been recently proposed as a novel adjuvant therapy for bipolar disorder and schizophrenia, yet its efficacy remains controversial. As both disorders are characterized by gating deficits, we tested the effects of TPM on the behavioral paradigm of prepulse inhibition (PPI) of the acoustic startle response, a validated animal model of sensorimotor gating. TPM (10, 18, 32, 58, 100 mg/kg, intraperitoneal, i.p.) enhanced PPI in rats in a dose-dependent fashion, prevented the PPI reduction mediated by the dopaminergic agonist apomorphine (0.25 mg/kg, subcutaneous, s.c.) and potentiated the effects of the antipsychotic drugs haloperidol (0.05, 0.1 mg/kg, i.p.) and clozapine (2.5, 5 mg/kg, i.p.). Conversely, TPM elicited no significant effect on the PPI disruption mediated by the NMDA receptor antagonist dizocilpine (0.05, 0.1 mg/kg, s.c.) and surprisingly antagonized the attenuation of dizocilpine-induced PPI disruption mediated by clozapine (5 mg/kg, i.p.). Our results suggest that TPM may exert diverse actions on the neural substrates of sensorimotor gating. While the pharmacological mechanisms of such effects are still elusive, our findings might contribute to shed light on some controversies on the therapeutic action of TPM, and point to this drug as a putative novel adjuvant therapy for some clusters of gating disturbances.


Assuntos
Encéfalo/efeitos dos fármacos , Frutose/análogos & derivados , Inibição Neural/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Antipsicóticos/agonistas , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Encéfalo/metabolismo , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Frutose/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Inibição Neural/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Topiramato
14.
Eur J Pharmacol ; 531(1-3): 166-70, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16423346

RESUMO

Clinical evidence suggests that prenatal exposure to cannabis may be conducive to long-term neurobehavioral impairments in executive and attentional domains. Such sensorimotor alterations might be related to disorders in gating functions. Hence, the present study was undertaken to assess the effects of long-term prenatal exposure to WIN 55,212-2, a potent cannabinoid receptor agonist, on prepulse inhibition of the acoustic startle reflex, a well-validated paradigm to test sensorimotor gating. In utero exposure to WIN 55,212-2 (0.5, 1 mg/kg, from day 5 to 20 of gestation) failed to alter startle magnitude in rats in comparison with controls. Similarly, prepulse inhibition of the startle was not significantly affected by such treatment, regardless of the age when behavioral testing was carried out (40, 60 or 80 days). Interestingly, prenatal treatment with WIN 55,212-2 (0.5 mg/kg, from day 5 to 20 of gestation) induced no differences in the prepulse inhibition-disrupting effects of apomorphine (0.125, 0.25 mg/kg, s.c.) and dizocilpine (0.05, 0.1 mg/kg, s.c.), suggesting that a prenatal exposure to a cannabinoid receptor agonist is likely unable to affect sensitivity of sensorimotor gating substrates to dopaminergic agonists and NMDA receptor antagonists. Our results show that prenatal exposure to cannabis does not affect reflex reactivity to environmental stimuli, ruling out that the observed impairments in executive functions are to refer to sensorimotor gating alterations.


Assuntos
Agonistas de Receptores de Canabinoides , Morfolinas/farmacologia , Naftalenos/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Estimulação Acústica , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Animais Recém-Nascidos , Benzoxazinas , Feminino , Masculino , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
15.
Biol Psychiatry ; 57(12): 1550-8, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15953492

RESUMO

BACKGROUND: Compelling evidence indicates that kappa opioid receptor (KOR) agonists produce perceptual distortions in animals and humans, yet the mechanism of action and clinical relevance of such effects remain unclear. Since abnormalities in preattentional functions and informational processing are hypothesized to underlie psychotic disorders, the present study has been designed to assess the role of KOR on sensorimotor gating. METHODS: The effects of the selective KOR agonist U50488 were evaluated on the behavioral paradigm of prepulse inhibition (PPI) of the acoustic startle reflex (ASR). RESULTS: U50488 (1.25, 2.5, and 5 mg/kg, subcutaneous [SC]) induced a dose-dependent reduction of PPI, which was efficiently prevented by the selective KOR antagonist norbinaltorphimine (nor-BNI, 10 mg/kg, SC), as well as by the atypical antipsychotic clozapine (5, 8 mg/kg, intraperitoneal [IP]) but not by the typical antipsychotic haloperidol (.1, .5 mg/kg, IP). Conversely, nor-BNI (10 mg/kg, SC) failed to reverse the PPI disruption mediated by both apomorphine (.25 mg/kg, SC) and dizocilpine (.1 mg/kg, SC). CONCLUSIONS: Our results support a pivotal role of KOR in the regulation of preattentional functions and sensorimotor gating, pointing to these receptors as a possible neurobiological substrate especially relevant to the clusters of psychosis unresponsive to typical antipsychotics.


Assuntos
Estimulação Acústica/métodos , Inibição Psicológica , Naltrexona/análogos & derivados , Receptores Opioides kappa/fisiologia , Reflexo de Sobressalto/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Análise de Variância , Animais , Antipsicóticos/farmacologia , Apomorfina/farmacologia , Clozapina/farmacologia , Maleato de Dizocilpina/farmacologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Haloperidol/farmacologia , Masculino , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Reflexo de Sobressalto/efeitos dos fármacos
16.
Psychopharmacology (Berl) ; 177(3): 264-71, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15290008

RESUMO

RATIONALE: A growing evidentiary body indicates cannabinoid exposure is conducive to cognitive impairment and psychotic phenomena in vulnerable individuals. In this respect, recent studies have displayed controversial results on the ability of cannabinoids to elicit sensorimotor gating alterations and attentional filtering, whose disruption is a distinctive feature of psychosis. OBJECTIVES: The goal of this study was to investigate the effects of acute, subchronic, and chronic treatment with the synthetic CB receptor agonist WIN 55,212-2 (WIN) on prepulse inhibition (PPI) of the acoustic startle reflex (ASR), a powerful paradigm for evaluation of sensorimotor gating. METHODS: Different groups of adult Sprague-Dawley rats were treated with 0.5, 1, and 2 mg/kg WIN (i.p.) acutely, as well as for 7 days and 21 days. All animals underwent testing 40 min after the last treatment and their evaluation was compared with that of animals treated with vehicle. In a separate group, the effects of WIN withdrawal were also analyzed, 24 h after discontinuation of a 21-day treatment. RESULTS: No variation in PPI was detected in any of the test groups when compared with controls, whatever the dosage and the treatment. CONCLUSIONS: These findings suggest WIN does not impair sensorimotor gating in Sprague-Dawley rats and confirm clinical evidence according to which cannabis is an unlikely causative of psychosis among non-vulnerable individuals. Nonetheless, since in other studies the same compound was shown to induce PPI alterations in Wistar rats, our results are also suggestive that genetic differences might be critical for the development of cannabis-induced cognitive disorders.


Assuntos
Morfolinas/farmacologia , Naftalenos/farmacologia , Inibição Reativa , Receptor CB1 de Canabinoide/agonistas , Reflexo de Sobressalto/fisiologia , Animais , Benzoxazinas , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Injeções Intraperitoneais , Masculino , Ruído , Psicofarmacologia/métodos , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/administração & dosagem , Reflexo de Sobressalto/efeitos dos fármacos
17.
Psychopharmacology (Berl) ; 171(3): 322-30, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-13680072

RESUMO

RATIONALE: Since baclofen, the prototypical GABA(B) receptor agonist, is known to reduce the activity of dopaminergic mesolimbic neurons, a putative antipsychotic property of this compound has been suggested, but the evidence for this is still controversial. OBJECTIVES: The aim of the present study was to elucidate the effects of baclofen on the prepulse inhibition (PPI) of the acoustic startle response (ASR), a behavioral paradigm considered to be one of the most powerful tools for the evaluation of sensorimotor gating and for the screening of antipsychotics. METHODS: We tested the effects of baclofen (1.25, 2.5, 5 and 10 mg/kg IP) in rats, per se and in co-treatment with some of the substances known to induce a robust reduction of PPI, such as apomorphine (0.25 mg/kg SC) and dizocilpine (0.1 mg/kg SC). Finally, in order to ascertain whether the effects of baclofen could be ascribed to its activity on GABA(B) receptors, we analyzed whether its action could be prevented by pretreatment with SCH 50911, a selective GABA(B) receptor antagonist (20 mg/kg IP). All the experiments were carried out using standard procedures for the assessment of PPI of the ASR. RESULTS: Baclofen per se produced no significant change in PPI parameters. Moreover, while no effect on apomorphine-mediated alterations in PPI parameters was observed, baclofen proved able to reverse dizocilpine-induced PPI disruption, and this effect was significantly prevented by SCH 50911. On the other hand, this last compound exhibited no effects per se at the same dose. CONCLUSIONS: These results indicate that GABA(B) receptors are implicated in the neurobiological circuitry accounting for glutamatergic action in sensorimotor gating, and therefore can be proposed as putative new targets in the pharmacological therapy of psychotic disorders. Further studies should be addressed to evaluate more closely the clinical efficacy of baclofen in this respect.


Assuntos
Estimulação Acústica/métodos , Apomorfina/farmacologia , Baclofeno/farmacologia , Maleato de Dizocilpina/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA