Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mSphere ; 5(3)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522780

RESUMO

Using live microbes as therapeutic candidates is a strategy that has gained traction across multiple therapeutic areas. In the skin, commensal microorganisms play a crucial role in maintaining skin barrier function, homeostasis, and cutaneous immunity. Alterations of the homeostatic skin microbiome are associated with a number of skin diseases. Here, we present the design of an engineered commensal organism, Staphylococcus epidermidis, for use as a live biotherapeutic product (LBP) candidate for skin diseases. The development of novel bacterial strains whose growth can be controlled without the use of antibiotics or genetic elements conferring antibiotic resistance enables modulation of therapeutic exposure and improves safety. We therefore constructed an auxotrophic strain of S. epidermidis that requires exogenously supplied d-alanine. The S. epidermidis NRRL B-4268 Δalr1 Δalr2 Δdat strain (SEΔΔΔ) contains deletions of three biosynthetic genes: two alanine racemase genes, alr1 and alr2 (SE1674 and SE1079), and the d-alanine aminotransferase gene, dat (SE1423). These three deletions restricted growth in d-alanine-deficient medium, pooled human blood, and skin. In the presence of d-alanine, SEΔΔΔ colonized and increased expression of human ß-defensin 2 in cultured human skin models in vitro. SEΔΔΔ showed a low propensity to revert to d-alanine prototrophy and did not form biofilms on plastic in vitro. These studies support the potential safety and utility of SEΔΔΔ as a live biotherapeutic strain whose growth can be controlled by d-alanine.IMPORTANCE The skin microbiome is rich in opportunities for novel therapeutics for skin diseases, and synthetic biology offers the advantage of providing novel functionality or therapeutic benefit to live biotherapeutic products. The development of novel bacterial strains whose growth can be controlled without the use of antibiotics or genetic elements conferring antibiotic resistance enables modulation of therapeutic exposure and improves safety. This study presents the design and in vitro evidence of a skin commensal whose growth can be controlled through d-alanine. The basis of this strain will support future clinical studies of this strain in humans.


Assuntos
Alanina/metabolismo , Terapia Biológica/métodos , Pele/microbiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/genética , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Humanos , Microbiota/efeitos dos fármacos , Simbiose
2.
J Bacteriol ; 202(14)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32366591

RESUMO

Staphylococcus aureus can utilize exogenous fatty acids for phospholipid synthesis. The fatty acid kinase FakA is essential for this utilization by phosphorylating exogenous fatty acids for incorporation into lipids. How FakA impacts the lipid membrane composition is unknown. In this study, we used mass spectrometry to determine the membrane lipid composition and properties of S. aureus in the absence of fakA We found the fakA mutant to have increased abundance of lipids containing longer acyl chains. Since S. aureus does not synthesize unsaturated fatty acids, we utilized oleic acid (18:1) to track exogenous fatty acid incorporation into lipids. We observed a concentration-dependent incorporation of exogenous fatty acids into the membrane that required FakA. We also tested how FakA and exogenous fatty acids impact membrane-related physiology and identified changes in membrane potential, cellular respiration, and membrane fluidity. To mimic the host environment, we characterized the lipid composition of wild-type and fakA mutant bacteria grown in mouse skin homogenate. We show that wild-type S. aureus can incorporate exogenous unsaturated fatty acids from host tissue, highlighting the importance of FakA in the presence of host skin tissue. In conclusion, FakA is important for maintaining the composition and properties of the phospholipid membrane in the presence of exogenous fatty acids, impacting overall cell physiology.IMPORTANCE Environmental fatty acids can be harvested to supplement endogenous fatty acid synthesis to produce membranes and circumvent fatty acid biosynthesis inhibitors. However, how the inability to use these fatty acids impacts lipids is unclear. Our results reveal lipid composition changes in response to fatty acid addition and when S. aureus is unable to activate fatty acids through FakA. We identify concentration-dependent utilization of oleic acid that, when combined with previous work, provides evidence that fatty acids can serve as a signal to S. aureus Furthermore, using mouse skin homogenates as a surrogate for in vivo conditions, we showed that S. aureus can incorporate host fatty acids. This study highlights how exogenous fatty acids impact bacterial membrane composition and function.


Assuntos
Proteínas de Bactérias/metabolismo , Lipídeos/química , Fosfotransferases/metabolismo , Staphylococcus aureus/enzimologia , Animais , Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Fosfotransferases/genética , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA