Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Anaesth ; 124(5): 585-593, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32145876

RESUMO

In March 2019, SmartTots, a public-private partnership between the US Food and Drug Administration and the International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal editors, and government agency representatives to discuss the continued need for rigorous preclinical research and the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to answer some of the field's largest questions. The attendees concluded that summarising the benefits and disadvantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new experiments and interpreting results across laboratories. This expert opinion report is a summary of these discussions, and includes a focused review of current animal models and reporting standards for the field of perinatal anaesthetic neurotoxicity. This will serve as a practical guide and road map for novel and rigorous experimental work.


Assuntos
Anestésicos/efeitos adversos , Pesquisa Biomédica/normas , Avaliação Pré-Clínica de Medicamentos/normas , Síndromes Neurotóxicas/etiologia , Relatório de Pesquisa/normas , Animais , Pesquisa Biomédica/métodos , Criança , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Parcerias Público-Privadas
2.
Biochim Biophys Acta ; 1837(3): 354-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24355434

RESUMO

Mitochondrial dysfunction contributes to cardiac ischemia-reperfusion (IR) injury but volatile anesthetics (VA) may alter mitochondrial function to trigger cardioprotection. We hypothesized that the VA isoflurane (ISO) mediates cardioprotection in part by altering the function of several respiratory and transport proteins involved in oxidative phosphorylation (OxPhos). To test this we used fluorescence spectrophotometry to measure the effects of ISO (0, 0.5, 1, 2mM) on the time-course of interlinked mitochondrial bioenergetic variables during states 2, 3 and 4 respiration in the presence of either complex I substrate K(+)-pyruvate/malate (PM) or complex II substrate K(+)-succinate (SUC) at physiological levels of extra-matrix free Ca(2+) (~200nM) and Na(+) (10mM). To mimic ISO effects on mitochondrial functions and to clearly delineate the possible ISO targets, the observed actions of ISO were interpreted by comparing effects of ISO to those elicited by low concentrations of inhibitors that act at each respiratory complex, e.g. rotenone (ROT) at complex I or antimycin A (AA) at complex III. Our conclusions are based primarily on the similar responses of ISO and titrated concentrations of ETC. inhibitors during state 3. We found that with the substrate PM, ISO and ROT similarly decreased the magnitude of state 3 NADH oxidation and increased the duration of state 3 NADH oxidation, ΔΨm depolarization, and respiration in a concentration-dependent manner, whereas with substrate SUC, ISO and ROT decreased the duration of state 3 NADH oxidation, ΔΨm depolarization and respiration. Unlike AA, ISO reduced the magnitude of state 3 NADH oxidation with PM or SUC as substrate. With substrate SUC, after complete block of complex I with ROT, ISO and AA similarly increased the duration of state 3 ΔΨm depolarization and respiration. This study provides a mechanistic understanding in how ISO alters mitochondrial function in a way that may lead to cardioprotection.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Isoflurano/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Antimicina A/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Malatos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/fisiologia , Modelos Biológicos , NAD/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Rotenona/farmacologia , Espectrometria de Fluorescência , Ácido Succínico/metabolismo , Desacopladores/farmacologia
3.
Exp Neurol ; 237(1): 207-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22770995

RESUMO

Research in the area of stem cell biology and regenerative medicine, along with neuroscience, will further our understanding of drug-induced death of neurons during their development. With the development of an in vitro model of stem cell-derived human neural cell lines investigators can, under control conditions and during intense neuronal growth, examine molecular mechanisms of various drugs and conditions on early developmental neuroapoptosis in humans. If the use of this model will lead to fewer risks, or identification of drugs and anesthetics that are less likely to cause the death of neurons, this approach will be a major stride toward assuring the safety of drugs during the brain development. The ultimate goal would be not only to find the trigger for the catastrophic chain of events, but also to prevent neuronal cell death itself.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Síndromes Neurotóxicas/diagnóstico , Neurotoxinas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Embrionárias/patologia , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Síndromes Neurotóxicas/patologia
4.
FEBS Lett ; 585(2): 328-34, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21156174

RESUMO

Nitric oxide (NO·) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO· on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO· donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO· scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The effect paralleled that of NO() in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the mitochondrial PT pore reveal a tandem impact of NO() on the two mitochondrial entities.


Assuntos
Óxido Nítrico/farmacologia , Canais de Ânion Dependentes de Voltagem/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Técnicas Eletrofisiológicas Cardíacas , Coração/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/química , Miocárdio/metabolismo , Ratos
5.
Am J Physiol Heart Circ Physiol ; 299(6): H1884-90, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935152

RESUMO

The sulfonylurea receptor-2 (SUR2) is a subunit of ATP-sensitive potassium channels (K(ATP)) in heart. Mice with the SUR2 gene disrupted (SUR2m) are constitutively protected from ischemia-reperfusion (I/R) cardiac injury. This was surprising because K(ATP), either sarcolemmal or mitochondrial or both, are thought to be important for cardioprotection. We hypothesized that SUR2m mice have an altered mitochondrial phenotype that protects against I/R. Mitochondrial membrane potential (ΔΨ(m)), tolerance to Ca(2+) load, and reactive oxygen species (ROS) generation were studied by fluorescence-based assays, and volumetric changes in response to K(+) were measured by light scattering in isolated mitochondria. For resting SUR2m mitochondria compared with wild type, the ΔΨ(m) was less polarized (46.1 ± 0.4 vs. 51.9 ± 0.6%), tolerance to Ca(2+) loading was increased (163 ± 2 vs. 116 ± 2 µM), and ROS generation was enhanced with complex I [8.5 ± 1.2 vs. 4.9 ± 0.2 arbitrary fluorescence units (afu)/s] or complex II (351 ± 51.3 vs. 166 ± 36.2 afu/s) substrates. SUR2m mitochondria had greater swelling in K(+) medium (30.2 ± 3.1%) compared with wild type (14.5 ± 0.6%), indicating greater K(+) influx. Additionally, ΔΨ(m) decreased and swelling increased in the absence of ATP in SUR2m, but the sensitivity to ATP was less compared with wild type. When the mitochondria were subjected to hypoxia-reoxygenation, the decrease in respiration rates and respiratory control index was less in SUR2m. ΔΨ(m) maintenance in the SUR2m intact myocytes was also more tolerant to metabolic inhibition. In conclusion, the cardioprotection observed in the SUR2m mice is associated with a protected mitochondrial phenotype resulting from enhanced K(+) conductance that partially dissipated ΔΨ(m). These results have implications for possible SUR2 participation in mitochondrial K(ATP).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio/metabolismo , Receptores de Droga/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Hipóxia Celular , Respiração Celular , Genótipo , Luz , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Mutantes , Dilatação Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Fenótipo , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Droga/genética , Espalhamento de Radiação , Espectrometria de Fluorescência , Receptores de Sulfonilureias , Fatores de Tempo
6.
Anesthesiology ; 113(4): 906-16, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20823757

RESUMO

BACKGROUND: Human embryonic stem cell (hESC)-derived cardiomyocytes potentially represent a powerful experimental model complementary to myocardium obtained from patients that is relatively inaccessible for research purposes. We tested whether anesthetic-induced preconditioning (APC) with isoflurane elicits competent protective mechanisms in hESC-derived cardiomyocytes against oxidative stress to be used as a model of human cardiomyocytes for studying preconditioning. METHODS: H1 hESC cell line was differentiated into cardiomyocytes using growth factors activin A and bone morphogenetic protein-4. Living ventricular hESC-derived cardiomyocytes were identified using a lentiviral vector expressing a reporter gene (enhanced green fluorescent protein) driven by a cardiac-specific human myosin light chain-2v promoter. Mitochondrial membrane potential, reactive oxygen species production, opening of mitochondrial permeability transition pore, and survival of hESC-derived cardiomyocytes were assessed using confocal microscopy. Oxygen consumption was measured in contracting cell clusters. RESULTS: Differentiation yielded a high percentage (∼85%) of cardiomyocytes in beating clusters that were positive for cardiac-specific markers and exhibited action potentials resembling those of mature cardiomyocytes. Isoflurane depolarized mitochondria, attenuated oxygen consumption, and stimulated generation of reactive oxygen species. APC protected these cells from oxidative stress-induced death and delayed mitochondrial permeability transition pore opening. CONCLUSIONS: APC elicits competent protective mechanisms against oxidative stress in hESC-derived cardiomyocytes, suggesting the feasibility to use these cells as a model of human cardiomyocytes for studying APC and potentially other treatments/diseases. Our differentiation protocol is very efficient and yields a high percentage of cardiomyocytes. These results also suggest a promising ability of APC to protect and improve engraftment of hESC-derived cardiomyocytes into the ischemic heart.


Assuntos
Anestésicos Inalatórios , Células-Tronco Embrionárias/fisiologia , Precondicionamento Isquêmico Miocárdico/métodos , Isoflurano , Miócitos Cardíacos/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Vetores Genéticos , Humanos , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Canais KATP/efeitos dos fármacos , Canais KATP/fisiologia , Lentivirus/genética , Potenciais da Membrana/fisiologia , Microdissecção , Microscopia Confocal , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
Anesth Analg ; 108(3): 858-66, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19224794

RESUMO

BACKGROUND: Similar to volatile anesthetics, the anesthetic noble gas xenon protects the heart from ischemia/reperfusion injury, but the mechanisms responsible for this phenomenon are not fully understood. We tested the hypothesis that xenon-induced cardioprotection is mediated by prosurvival signaling kinases that target mitochondria. METHODS: Male Wistar rats instrumented for hemodynamic measurements were subjected to a 30 min left anterior descending coronary artery occlusion and 2 h reperfusion. Rats were randomly assigned to receive 70% nitrogen/30% oxygen (control) or three 5-min cycles of 70% xenon/30% oxygen interspersed with the oxygen/nitrogen mixture administered for 5 min followed by a 15 min memory period. Myocardial infarct size was measured using triphenyltetrazolium staining. Additional hearts from control and xenon-pretreated rats were excised for Western blotting of Akt and glycogen synthase kinase 3 beta (GSK-3beta) phosphorylation and isolation of mitochondria. Mitochondrial oxygen consumption before and after hypoxia/reoxygenation and mitochondrial permeability transition pore opening were determined. RESULTS: Xenon significantly (P < 0.05) reduced myocardial infarct size compared with control (32 +/- 4 and 59% +/- 4% of the left ventricular area at risk; mean +/- sd) and enhanced phosphorylation of Akt and GSK-3beta. Xenon pretreatment preserved state 3 respiration of isolated mitochondria compared with the results obtained in the absence of the gas. The Ca(2+) concentration required to induce mitochondrial membrane depolarization was larger in the presence compared with the absence of xenon pretreatment (78 +/- 17 and 56 +/- 17 microM, respectively). The phosphoinositol-3-kinase-kinase inhibitor wortmannin blocked the effect of xenon on infarct size and respiration. CONCLUSIONS: These results indicate that xenon preconditioning reduces myocardial infarct size, phosphorylates Akt, and GSK-3beta, preserves mitochondrial function, and inhibits Ca(2+)-induced mitochondrial permeability transition pore opening. These data suggest that xenon-induced cardioprotection occurs because of activation of prosurvival signaling that targets mitochondria and renders them less vulnerable to ischemia-reperfusion injury.


Assuntos
Anestésicos Inalatórios/farmacologia , Cardiotônicos , Metabolismo Energético/efeitos dos fármacos , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Xenônio/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Cálcio/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Frequência Cardíaca/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Consumo de Oxigênio/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA