Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 245: 118752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823024

RESUMO

AIMS: Non-invasive measures of brain iron content would be of great benefit in neurodegeneration with brain iron accumulation (NBIA) to serve as a biomarker for disease progression and evaluation of iron chelation therapy. Although magnetic resonance imaging (MRI) provides several quantitative measures of brain iron content, none of these have been validated for patients with a severely increased cerebral iron burden. We aimed to validate R2* as a quantitative measure of brain iron content in aceruloplasminemia, the most severely iron-loaded NBIA phenotype. METHODS: Tissue samples from 50 gray- and white matter regions of a postmortem aceruloplasminemia brain and control subject were scanned at 1.5 T to obtain R2*, and biochemically analyzed with inductively coupled plasma mass spectrometry. For gray matter samples of the aceruloplasminemia brain, sample R2* values were compared with postmortem in situ MRI data that had been obtained from the same subject at 3 T - in situ R2*. Relationships between R2* and tissue iron concentration were determined by linear regression analyses. RESULTS: Median iron concentrations throughout the whole aceruloplasminemia brain were 10 to 15 times higher than in the control subject, and R2* was linearly associated with iron concentration. For gray matter samples of the aceruloplasminemia subject with an iron concentration up to 1000 mg/kg, 91% of variation in R2* could be explained by iron, and in situ R2* at 3 T and sample R2* at 1.5 T were highly correlated. For white matter regions of the aceruloplasminemia brain, 85% of variation in R2* could be explained by iron. CONCLUSIONS: R2* is highly sensitive to variations in iron concentration in the severely iron-loaded brain, and might be used as a non-invasive measure of brain iron content in aceruloplasminemia and potentially other NBIA disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ceruloplasmina/deficiência , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Autopsia , Ceruloplasmina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo
2.
Trends Neurosci ; 42(6): 384-401, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31047721

RESUMO

Although iron is crucial for neuronal functioning, many aspects of cerebral iron biology await clarification. The ability to quantify specific iron forms in the living brain would open new avenues for diagnosis, therapeutic monitoring, and understanding pathogenesis of diseases. A modality that allows assessment of brain tissue composition in vivo, in particular of iron deposits or myelin content on a submillimeter spatial scale, is magnetic resonance imaging (MRI). Multimodal strategies combining MRI with complementary analytical techniques ex vivo have emerged, which may lead to improved specificity. Interdisciplinary collaborations will be key to advance beyond simple correlative analyses in the biological interpretation of MRI data and to gain deeper insights into key factors leading to iron accumulation and/or redistribution associated with neurodegeneration.


Assuntos
Química Encefálica , Encéfalo/fisiologia , Ferro/análise , Bainha de Mielina/química , Neurobiologia/métodos , Neuroimagem/métodos , Humanos , Neurobiologia/tendências , Neuroimagem/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA