Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1169812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197407

RESUMO

There is no first-line treatment for vitiligo, a skin disease characterized by a lack of melanin produced by the melanocytes, resulting in an urgent demand for new therapeutic drugs capable of stimulating melanocyte functions, including melanogenesis. In this study, traditional medicinal plant extracts were tested for cultured human melanocyte proliferation, migration, and melanogenesis using MTT, scratch wound-healing assays, transmission electron microscopy, immunofluorescence staining, and Western blot technology. Of the methanolic extracts, Lycium shawii L. (L. shawii) extract increased melanocyte proliferation at low concentrations and modulated melanocyte migration. At the lowest tested concentration (i.e., 7.8 µg/mL), the L. shawii methanolic extract promoted melanosome formation, maturation, and enhanced melanin production, which was associated with the upregulation of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 melanogenesis-related proteins, and melanogenesis-related proteins. After the chemical analysis and L. shawii extract-derived metabolite identification, the in silico studies revealed the molecular interactions between Metabolite 5, identified as apigenin (4,5,6-trihydroxyflavone), and the copper active site of tyrosinase, predicting enhanced tyrosinase activity and subsequent melanin formation. In conclusion, L. shawii methanolic extract stimulates melanocyte functions, including melanin production, and its derivative Metabolite 5 enhances tyrosinase activity, suggesting further investigation of the L. shawii extract-derived Metabolite 5 as a potential natural drug for vitiligo treatment.

2.
Biomolecules ; 10(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973079

RESUMO

Although the antidiabetic efficacy of Nyctanthes arbor-tristis flowers has been reported, antiproliferative and anti-obesity activities are yet to be explored. We examined the anti-obesity and antiproliferative potentials of different fractions (hexane, chloroform, ethyl acetate, methanol) of N. abor-tristis flower extract for the first time using 3T3-L1 cells, primary peripheral blood mononuclear cells (PBMC) isolated from healthy and adult acute myeloid (AML) and chronic lymphocytic leukemia (CLL) patients, recombinant Jurkat T cells, and MCF7 cell lines. The in vitro hypoglycemic activity was evaluated using the inhibition of -amylase enzyme and glucose uptake by yeast cells. The percentage glucose uptake and -amylase inhibitory activity increased in a dose-dependent manner in the crude and the tested fractions (hexane and ethyl acetate). Inhibition of the 3T3-L1 cells' differentiation was observed in the ethyl acetate and chloroform fractions, followed by the hexane fraction. Antiproliferative analyses revealed that Nyctanthes exerted a high specific activity against anti-AML and anti-CLL PBMC cells, especially by the hexane and ethyl acetate fractions. The gas chromatography/mass spectrometry analysis indicated the presence of 1-heptacosanol (hexane fraction), 1-octadecene (hexane and chloroform fractions), and other organic compounds. Molecular docking demonstrated that phenol,2,5-bis(1,1-dimethylethyl) and 4-hydroxypyridine 1-oxide compounds showed specificity toward survivin protein, indicating the feasibility of N. abor-tristis in developing new drug leads against leukemia.


Assuntos
Adipócitos/citologia , Antineoplásicos Fitogênicos/farmacologia , Flores/química , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Mieloide Aguda/metabolismo , Oleaceae/química , Survivina/metabolismo , Células 3T3-L1 , Alcenos/química , Animais , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Concentração Inibidora 50 , Células Jurkat , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucócitos Mononucleares/citologia , Células MCF-7 , Camundongos , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia
3.
Biomed Rep ; 8(3): 275-282, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29564125

RESUMO

The 'Therapeutics discovery: From bench to first in-human trials' conference, held at the King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), Kingdom of Saudi Arabia (KSA) from October 10-12, 2017, provided a unique opportunity for experts worldwide to discuss advances in drug discovery and development, focusing on phase I clinical trials. It was the first event of its kind to be hosted at the new research center, which was constructed to boost drug discovery and development in the KSA in collaboration with institutions, such as the Academic Drug Discovery Consortium in the United States of America (USA), Structural Genomics Consortium of the University of Oxford in the United Kingdom (UK), and Institute of Materia Medica of the Chinese Academy of Medical Sciences in China. The program was divided into two parts. A pre-symposium day took place on October 10, during which courses were conducted on clinical trials, preclinical drug discovery, molecular biology and nanofiber research. The attendees had the opportunity for one-to-one meetings with international experts to exchange information and foster collaborations. In the second part of the conference, which took place on October 11 and 12, the clinical trials pipeline, design and recruitment of volunteers, and economic impact of clinical trials were discussed. The Saudi Food and Drug Administration presented the regulations governing clinical trials in the KSA. The process of preclinical drug discovery from small molecules, cellular and immunologic therapies, and approaches to identifying new targets were also presented. The recommendation of the conference was that researchers in the KSA must invest more fund, talents and infrastructure to lead the region in phase I clinical trials and preclinical drug discovery. Diseases affecting the local population, such as Middle East Respiratory Syndrome and resistant bacterial infections, represent the optimal starting point.

4.
J Circadian Rhythms ; 15: 3, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-30210557

RESUMO

Disregulation of genes making up the mammalian circadian clock has been associated with different forms of cancer. This study aimed to address how the circadian clock genes behave over the course of treatment for both the acute and chronic forms of leukemia and whether any could be used as potential biomarkers as a read-out for therapeutic efficacy. Expression profiling for both core and ancillary clock genes revealed that the majority of clock genes are down-regulated in acute myeloid leukemia patients, except for Cry2, which is up-regulated towards the end of treatment. A similar process was seen in acute lymphocytic leukemia patients; however, here, Cry2 expression came back up towards control levels upon treatment completion. In addition, all of the core clock genes were down-regulated in both chronic forms of leukemia (chronic myeloid leukemia and chronic lymphocytic leukemia), except for Cry2, which was not affected when the disease was diagnosed. Furthermore, the NAD(+) - dependent protein deacetylase Sirt1 has been proposed to have a dual role in both control of circadian clock circuitry and promotion of cell survival by inhibiting apoptotic pathways in cancer. We used a pharmacological-based approach to see whether Sirt1 played a role in regulating the circadian clock circuitry in both acute and chronic forms of leukemia. Our results suggest that interfering with Sirt1 leads to a partial restoration of BMAL1 oscillation in chronic myeloid leukemia patient samples. Furthermore, interfering with Sirt1 activity led to both the induction and repression of circadian clock genes in both acute and chronic forms of leukemia, which makes it a potential therapeutic target to either augment existing therapies for chronic leukemia or to act as a means of facilitating chronotherapy in order to maximize both the effectiveness of existing therapies and to minimize therapy-associated toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA