Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 38(2): 636-645, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37963759

RESUMO

Hyperforin is a phloroglucinol derivative isolated from the medicinal plant Hypericum perforatum (St John's wort, SJW). This lipophilic biomolecule displays antibacterial, pro-apoptotic, antiproliferative, and anti-inflammatory activities. In addition, in vitro and in vivo data showed that hyperforin is a promising molecule with potential applications in neurology and psychiatry. For instance, hyperforin possesses antidepressant properties, impairs the uptake of neurotransmitters, and stimulates the brain derived neurotrophic factor (BDNF)/TrkB neurotrophic signaling pathway, the adult hippocampal neurogenesis, and the brain homeostasis of zinc. In fact, hyperforin is a multi-target biomolecule with a complex neuropharmacological profile. However, one prominent pharmacological feature of hyperforin is its ability to influence the homeostasis of cations such as Ca2+ , Na+ , Zn2+ , and H+ . So far, the pathophysiological relevance of these actions is currently unknown. The main objective of the present work is to provide an overview of the cellular neurobiology of hyperforin, with a special focus on its effects on neuronal membranes and the movement of cations.


Assuntos
Hypericum , Neurobiologia , Floroglucinol/análogos & derivados , Antidepressivos/farmacologia , Terpenos/farmacologia , Floroglucinol/farmacologia , Extratos Vegetais/farmacologia , Cátions , Compostos Bicíclicos com Pontes/farmacologia
2.
Metallomics ; 6(7): 1269-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733507

RESUMO

The canonical transient receptor potential 6 (TRPC6) protein is a non-selective cation channel able to transport essential trace elements like iron (Fe) and zinc (Zn) through the plasma membrane. Its over-expression in HEK-293 cells causes an intracellular accumulation of Zn, indicating that it could be involved in Zn transport. This finding prompted us to better understand the role played by TRPC6 in Zn homeostasis. Experiments done using the fluorescent probe FluoZin-3 showed that HEK cells possess an intracellular pool of mobilisable Zn present in compartments sensitive to the vesicular proton pump inhibitor Baf-A, which affects endo/lysosomes. TRPC6 over-expression facilitates the basal uptake of Zn and enhances the size of the pool of Zn sensitive to Baf-A. Quantitative RT-PCR experiments showed that TRPC6 over-expression does not affect the mRNA expression of Zn transporters (ZnT-1, ZnT-5, ZnT-6, ZnT-7, ZnT-9, Zip1, Zip6, Zip7, and Zip14); however it up-regulates the mRNA expression of metallothionein-I and -II. This alters the Zn buffering capacities of the cells as illustrated by the experiments done using the Zn ionophore Na pyrithione. In addition, HEK cells over-expressing TRPC6 grow slower than their parental HEK cells. This feature can be mimicked by growing HEK cells in a culture medium supplemented with 5 µM of Zn acetate. Finally, a proteomic analysis revealed that TRPC6 up-regulates the expression of the actin-associated proteins ezrin and cofilin-1, and changes the organisation of the actin cytoskeleton without changing the cellular actin content. Altogether, these data indicate that TRPC6 is participating in the transport of Zn and influences the Zn storage and buffering capacities of the cells.


Assuntos
Canais de Cátion TRPC/biossíntese , Zinco/metabolismo , Fatores de Despolimerização de Actina/biossíntese , Proteínas de Transporte de Cátions/metabolismo , Proteínas do Citoesqueleto/biossíntese , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Compostos Policíclicos/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Canal de Cátion TRPC6
3.
Int J Neuropsychopharmacol ; 16(1): 189-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22226089

RESUMO

Hyperforin is one of the main bioactive compounds that underlie the antidepressant actions of the medicinal plant Hypericum perforatum (St. John's wort). However, the effects of a chronic hyperforin treatment on brain cells remains to be fully addressed. The following study was undertaken to further advance our understanding of the biological effects of this plant extract on neurons. Special attention was given to its impact on the brain-derived neurotrophic factor (BDNF) receptor TrkB and on adult hippocampal neurogenesis since they appear central to the mechanisms of action of antidepressants. The consequences of a chronic hyperforin treatment were investigated on cortical neurons in culture and on the brain of adult mice treated for 4 wk with a daily injection (i.p.) of hyperforin (4 mg/kg). Its effects on the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phospho-CREB (p-CREB), TrkB and phospho-TrkB (p-TrkB) were analysed by Western blot experiments and its impact on adult hippocampal neurogenesis was also investigated. Hyperforin stimulated the expression of TRPC6 channels and TrkB via SKF-96365-sensitive channels controlling a downstream signalling cascade involving Ca(2+), protein kinase A, CREB and p-CREB. In vivo, hyperforin augmented the expression of TrkB in the cortex but not in the hippocampus where hippocampal neurogenesis remained unchanged. In conclusion, this plant extract acts on the cortical BDNF/TrkB pathway leaving adult hippocampal neurogenesis unaffected. This study provides new insights on the neuronal responses controlled by hyperforin. We propose that the cortex is an important brain structure targeted by hyperforin.


Assuntos
Antidepressivos/farmacologia , Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Floroglucinol/análogos & derivados , Receptor trkB/fisiologia , Terpenos/farmacologia , Regulação para Cima/fisiologia , Fatores Etários , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Floroglucinol/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Gravidez , Receptor trkB/biossíntese , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
4.
Neuropharmacology ; 61(8): 1321-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21854792

RESUMO

In vitro and in vivo experiments were carried out to investigate the consequences on brain cells of a chronic treatment with hyperforin, a plant extract known to dissipate the mitochondrial membrane potential and to release Zn(2+) and Ca(2+) from these organelles. Dissociated cortical neurons were grown in a culture medium supplemented with 1 µM hyperforin. Live-cell imaging experiments with the fluorescent probes FluoZin-3 and Fluo-4 show that a 3 day-hyperforin treatment diminishes the size of the hyperforin-sensitive pools of Ca(2+) and Zn(2+) whereas it increases the size of the DTDP-sensitive pool of Zn(2+) without affecting the ionomycin-sensitive pool of Ca(2+). When assayed by quantitative PCR the levels of mRNA coding for metallothioneins (MTs) I, II and III were increased in cortical neurons after a 3 day-hyperforin treatment. This was prevented by the zinc chelator TPEN, indicating that the plant extract controls the expression of MTs in a zinc-dependent manner. Brains of adult mice who received a daily injection (i.p.) of hyperforin (4 mg/kg/day) for 4 weeks had a higher sulphur content than control animals. They also exhibited an enhanced expression of the genes coding for MTs. However, the long-term treatment did not affect the brain levels of calcium and zinc. Based on these results showing that hyperforin influences the size of the internal pools of Zn(2+), the expression of MTs and the brain cellular sulphur content, it is proposed that hyperforin changes the Zn-storage capacity of brain cells and interferes with their thiol status.


Assuntos
Encéfalo/citologia , Neurônios/efeitos dos fármacos , Floroglucinol/análogos & derivados , Terpenos/farmacologia , Zinco/metabolismo , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Quelantes/farmacologia , Dissulfetos/farmacologia , Relação Dose-Resposta a Droga , Etilenodiaminas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ionomicina/farmacologia , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidantes/farmacologia , Floroglucinol/farmacologia , Enxofre/metabolismo , Fatores de Tempo
5.
Rev Environ Contam Toxicol ; 210: 35-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21170702

RESUMO

Concomitant with the expansion of the nuclear industry, the concentrations of several pollutants, radioactive or otherwise, including uranium, caesium, cadmium and cobalt, have increased over the last few decades. These elemental pollutants do exist in the environment and are a threat to many organisms. Behavior represents the integration of all the anatomical adaptations and physiological processes that occur within an organism. Compared to other biological endpoints, the effects of pollutants on animal behavior have been the focus of only a few studies. However, behavioral changes appear to be ideal for assessing the effects of pollutants on animal populations, because behavior links physiological functions with ecological processes. The alteration of behavioral responses can have severe implications for survival of individuals and of population of some species. Behavioral disruptions may derive from several underlying mechanisms: disruption of neuro-sensorial activity and of endocrines, or oxidative and metabolic disruptions. In this review, we presented an overview of the current literature in which the effects of radioactive pollutants on behavior in humans, rodents, fish and wildlife species are addressed. When possible, we have also indicated the potential underlying mechanisms of the behavioral alterations and parameters measured. In fried, chronic uranium contamination is associated with behavior alterations and mental disorders in humans, and cognitive deficits in rats. Comparative studies on depleted and enriched uranium effects in rats showed that chemical and radiological activities of this metal induced negative effects on several behavioral parameters and also produced brain oxidative stress. Uranium exposure also modifies feeding behavior of bivalves and reproductive behavior of fish. Studies of the effects of the Chernobyl accident shows that chronic irradiation to 137Cs induces both nervous system diseases and mental disorders in humans leading to increased suicides, as well as modification of preferred nesting sites, reduced hatching success and fecundity in birds that live in the Chernobyl zone. No significant effect from caesium exposure was shown in laboratory experiments with rats, but few studies were conducted. Data on radioactive cadmium are not available in the literature, but the effects of its metallic form have been well studied. Cadmium induces mental retardation and psychomotor alterations in exposed populations and increases anxiety in rats, leading to depression. Cadmium exposure also results in well-documented effects on feeding and burrowing behavior in several invertebrate species (crustaceans, gastropods, annelids, bivalves) and on different kinds of fish behavior (swimming activity, fast-start response, antipredatory behavior). Cobalt induces memory deficits in humans and may be involved in Alzheimer's disease; gamma irradiation by cobalt also decreases fecundity and alters mating behavior in insects. Collectively, data are lacking or are meagre on radionuclide pollutants, and a better knowledge of their actions on the cellular and molecular mechanisms that control animal behavior is needed.


Assuntos
Comportamento Animal/efeitos da radiação , Cádmio/toxicidade , Radioisótopos de Césio/toxicidade , Cobalto/toxicidade , Urânio/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Ecologia , Humanos
6.
J Neurochem ; 112(1): 204-13, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19845832

RESUMO

Hyperforin, an extract of the medicinal plant hypericum perforatum (also named St John's wort), possesses antidepressant properties. Recent data showed that it elevates the intracellular concentration of Ca(2+) by activating diacylglycerol-sensitive C-class of transient receptor potential (TRPC6) channels without activating the other isoforms (TRPC1, TRPC3, TRPC4, TRPC5, and TRPC7). This study was undertaken to further characterize the cellular neuronal responses induced by hyperforin. Experiments conducted on cortical neurons in primary culture and loaded with fluorescent probes for Ca(2+) (Fluo-4) and Zn(2+) (FluoZin-3) showed that it not only controls the activity of plasma membrane channels but it also mobilizes these two cations from internal pools. Experiments conducted on isolated brain mitochondria indicated that hyperforin, like the inhibitor of oxidative phosphorylation, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), collapses the mitochondrial membrane potential. Furthermore, it promotes the release of Ca(2+) and Zn(2+) from these organelles via a ruthenium red-sensitive transporter. In fact, hyperforin exerts complex actions on CNS neurons. This antidepressant not only triggers the entry of cations via plasma membrane TRPC6 channels but it displays protonophore-like properties. As hyperforin is now use to probe the functions of native TRPC6 channels, our data indicate that caution is required when interpreting results obtained with this antidepressant.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Floroglucinol/análogos & derivados , Canais de Cátion TRPC/metabolismo , Terpenos/farmacologia , Zinco/metabolismo , Animais , Compostos Bicíclicos com Pontes/farmacologia , Células Cultivadas , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Floroglucinol/farmacologia , Canais de Cátion TRPC/agonistas , Canal de Cátion TRPC6
7.
J Neurochem ; 108(1): 126-38, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19094061

RESUMO

The lipid diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) was used to verify the existence of DAG-sensitive channels in cortical neurons dissociated from E13 mouse embryos. Calcium imaging experiments showed that OAG increased the cytosolic concentration of Ca(2+) ([Ca(2+)]i) in nearly 35% of the KCl-responsive cells. These Ca(2+) responses disappeared in a Ca(2+)-free medium supplemented with EGTA. Mn(2+) quench experiments showed that OAG activated Ca(2+)-conducting channels that were also permeant to Ba(2+). The OAG-induced Ca(2+) responses were unaffected by nifedipine or omega-conotoxin GVIA (Sigma-Aldrich, Saint-Quentin Fallavier, France) but blocked by 1-[beta-(3-(4-Methoxyphenyl)propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF)-96365 and Gd(3+). Replacing Na(+) ions with N-methyl-D-glucamine diminished the amplitude of the OAG-induced Ca(2+) responses showing that the Ca(2+) entry was mediated via Na(+)-dependent and Na(+)-independent mechanisms. Experiments carried out with the fluorescent Na(+) indicator CoroNa Green showed that OAG elevated [Na(+)]i. Like OAG, the DAG lipase inhibitor RHC80267 increased [Ca(2+)]i but not the protein kinase C activator phorbol 12-myristate 13-acetate. Moreover, the OAG-induced Ca(2+) responses were not regulated by protein kinase C activation or inhibition but they were augmented by flufenamic acid which increases currents through C-type transient receptor potential protein family (TRPC) 6 channels. In addition, application of hyperforin, a specific activator of TRPC6 channels, elevated [Ca(2+)]i. Whole-cell patch-clamp recordings showed that hyperforin activated non-selective cation channels. They were blocked by SKF-96365 but potentiated by flufenamic acid. Altogether, our data show the presence of hyperforin- and OAG-sensitive Ca(2+)-permeable channels displaying TRPC6-like properties. This is the first report revealing the existence of second messenger-operated channels in cortical neurons.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Córtex Cerebral/citologia , Diglicerídeos/farmacologia , Neurônios/efeitos dos fármacos , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Canais de Cátion TRPC/fisiologia , Compostos de Anilina/metabolismo , Animais , Compostos Bicíclicos com Pontes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Cicloexanonas/farmacologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Fura-2/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Cloreto de Potássio/farmacologia , Sódio/metabolismo , Terpenos/farmacologia , Xantenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA