RESUMO
Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 µmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were â¼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were â¼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.
Assuntos
Leucina/farmacologia , Proteínas Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Alanina/farmacologia , Sistema A de Transporte de Aminoácidos/efeitos dos fármacos , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Músculos do Dorso , Suplementos Nutricionais , Nutrição Enteral , Infusões Parenterais , Leucina/administração & dosagem , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Ribossômicas/efeitos dos fármacos , Proteínas Ribossômicas/genética , Sus scrofa , Suínos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Endotoxemia affects intestinal physiology. A decrease of circulating citrulline concentration is considered as a reflection of the intestinal function. Citrulline can be produced in enterocytes notably from glutamate and glutamine. The aim of this work was to determine if glutamate, glutamine and citrulline concentrations in blood, intestine and muscle are decreased by endotoxemia, and if supplementation with glutamate or glutamine can restore normal concentrations. We induced endotoxemia in rats by an intraperitoneal injection of 0.3 mg kg(-1) lipopolysaccharide (LPS). This led to a rapid anorexia, negative nitrogen balance and a transient increase of the circulating level of IL-6 and TNF-α. When compared with the values measured in pair fed (PF) animals, almost all circulating amino acids (AA) including citrulline decreased, suggesting a decrease of intestinal function. However, at D2 after LPS injection, most circulating AA concentrations were closed to the values recorded in the PF group. At that time, among AA, only glutamate, glutamine and citrulline were decreased in gastrocnemius muscle without change in intestinal mucosa. A supplementation with 4% monosodium glutamate (MSG) or an isomolar amount of glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscle. However, MSG supplementation led to an accumulation of glutamate in the intestinal mucosa. In conclusion, endotoxemia rapidly but transiently decreased the circulating concentrations of almost all AA and more durably of glutamate, glutamine and citrulline in muscle. Supplementation with glutamate or glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscles. The implication of a loss of the intestinal capacity for AA absorption and/or metabolism in endotoxemia (as judged from decreased citrulline plasma concentration) for explaining such results are discussed.
Assuntos
Citrulina/sangue , Endotoxemia/metabolismo , Ácido Glutâmico/sangue , Glutamina/sangue , Mucosa Intestinal/metabolismo , Músculo Esquelético/metabolismo , Administração Oral , Animais , Anorexia/dietoterapia , Anorexia/etiologia , Anorexia/metabolismo , Citrulina/administração & dosagem , Suplementos Nutricionais , Endotoxemia/induzido quimicamente , Endotoxemia/complicações , Endotoxemia/dietoterapia , Glutamina/administração & dosagem , Interleucina-6/sangue , Mucosa Intestinal/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Wistar , Glutamato de Sódio/administração & dosagem , Fator de Necrose Tumoral alfa/sangueRESUMO
Monosodium glutamate (MSG) is a worldwide used flavor enhancer. Supplemental glutamate may impact physiological functions. The aim of this study was to document the metabolic and physiological consequences of supplementation with 2% MSG (w/w) in rats. After 15 days-supplementation and following the ingestion of a test meal containing 2% MSG, glutamic acid accumulated for 5h in the stomach and for 1h in the small intestine. This coincided with a significant decrease of intestinal glutaminase activity, a marked specific increase in plasma glutamine concentration and a transient increase of plasma insulin concentration. MSG after chronic or acute supplementation had no effect on food intake, body weight, adipose tissue masses, gastric emptying rate, incorporation of dietary nitrogen in gastrointestinal and other tissues, and protein synthesis in intestinal mucosa, liver and muscles. The only significant effects of chronic supplementation were a slightly diminished gastrocnemius muscle mass, increased protein mass in intestinal mucosa and decreased protein synthesis in stomach. It is concluded that MSG chronic supplementation promotes glutamine synthesis in the body but has little effect on the physiological functions examined.
Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutamina/biossíntese , Biossíntese de Proteínas/efeitos dos fármacos , Glutamato de Sódio/farmacologia , Análise de Variância , Animais , Primers do DNA/genética , Suplementos Nutricionais , Esvaziamento Gástrico/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Glutamina/sangue , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Cinética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Nitrogênio/metabolismo , RatosRESUMO
The consumption of monosodium glutamate (MSG) is advocated to elicit physiological and metabolic effects, yet these effects have been poorly investigated directly in humans and in particular in the postprandial phase. Thirteen healthy adults were supplemented for 6 days with a nutritional dose of MSG (2 g) or sodium chloride (NaCl) as control, following a crossover design. On the 7th day, they underwent a complete postprandial examination for the 6 h following the ingestion of the same liquid standard meal (700 kcal, 20% of energy as [(15)N]protein, 50% as carbohydrate, and 30% as fat) supplemented with MSG or NaCl. Real-ultrasound measures of antral area indicated a significant increased distension for the 2 h following the meal supplemented with MSG vs. NaCl. This early postprandial phase was also associated with significantly increased levels of circulating leucine, isoleucine, valine, lysine, cysteine, alanine, tyrosine, and tryptophan after MSG compared with NaCl. No changes to the postprandial glucose, insulin, glucagon-like peptide (GLP)-1, and ghrelin were noted between MSG- and NaCl-supplemented meals. Subjective assessments of hunger and fullness were neither affected by MSG supplementation. Finally, the postprandial fate of dietary N was identical between dietary conditions. Our findings indicate that nutritional dose of MSG promoted greater postprandial elevations of several indispensable amino acids in plasma and induced gastric distension. Further work to elucidate the possible sparing effect of MSG on indispensable amino acid first-pass uptake in humans is warranted. This trial was registered at clinicaltrials.gov as NCT00862017.
Assuntos
Aminoácidos/sangue , Antro Pilórico/efeitos dos fármacos , Glutamato de Sódio/farmacologia , Adulto , Estudos Cross-Over , Feminino , Esvaziamento Gástrico/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial/fisiologiaRESUMO
Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.