Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Biochem Biophys ; 726: 109231, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660298

RESUMO

Complex I (NADH-ubiquinone reductase) and Complex III (ubiquinol-cytochrome c reductase) supplemented with NADH generated O2-at maximum rates of 9.8 and 6.5 nmol/min/mg of protein, respectively, while, in the presence of superoxide dismutase, the same systems generated H2O2 at maximum rates of 5.1 and 4.2 nmol/min/mg of protein, respectively. H2O2 was essentially produced by disproportionation of O2-, which constitutes the precursor of H2O2. The effectiveness of the generation of oxygen intermediates by Complex I in the absence of other specific electron acceptors was 0.95 mol of O2- and 0.63 mol of H2O2/mol of NADH. A reduced form of ubiquinone appeared to be responsible for the reduction of O2 to O2-, since (a) ubiquinone constituted the sole common major component of Complexes I and III, (b) H202 generation by Complex I was inhibited by rotenone, and (c) supplementation of Complex I with exogenous ubiquinones increased the rate of H2O2 generation. The efficiency of added quinones as peroxide generators decreased in the order Q1 > Q0 > Q2 > Q6 = Q10, in agreement with the quinone capacity of acting as electron acceptor for Complex I. In the supplemented systems, the exogenous quinone was reduced by Complex I and oxidized nonenzymati- cally by molecular oxygen. Additional evidence for the role of ubiquinone as peroxide generator is provided by the generation of O2- and H2O2 during autoxidation of quinols. In oxygenated buffers, ubiquinol (Q0H2), benzoquinol, duroquinol and menadiol generated O2-with k3 values of 0.1 to 1.4 M-1 s-1 and H2O2 with k4 values of 0.009 to 4.3 m-1·s-1.


Assuntos
Complexo I de Transporte de Elétrons , Superóxidos , Animais , Bovinos , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , NAD/metabolismo , Oxigênio/metabolismo , Quinonas , Superóxidos/metabolismo , Ubiquinona/metabolismo
2.
Free Radic Biol Med ; 135: 274-282, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862545

RESUMO

Mitochondrial dysfunction named complex I syndrome was observed in striatum mitochondria of rotenone treated rats (2 mg rotenone/kg, i. p., for 30 or 60 days) in an animal model of Parkinson disease. After 60 days of rotenone treatment, the animals showed: (a) 6-fold increased bradykinesia and 60% decreased locomotor activity; (b) 35-34% decreases in striatum O2 uptake and in state 3 mitochondrial respiration with malate-glutamate as substrate; (c) 43-57% diminished striatum complex I activity with 60-71% decreased striatum mitochondrial NOS activity, determined both as biochemical activity and as functional activity (by the NO inhibition of active respiration); (d) 34-40% increased rates of mitochondrial O2•- and H2O2 productions and 36-46% increased contents of the products of phospholipid peroxidation and of protein oxidation; and (e) 24% decreased striatum mitochondrial content, likely associated to decreased NO-dependent mitochondrial biogenesis. Intermediate values were observed after 30 days of rotenone treatment. Frontal cortex tissue and mitochondria showed similar but less marked changes. Rotenone-treated rats showed mitochondrial complex I syndrome associated with cellular oxidative stress in the dopaminergic brain areas of striatum and frontal cortex, a fact that describes the high sensitivity of mitochondrial complex I to inactivation by oxidative reactions.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Doença de Parkinson/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/deficiência , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hipocinesia/induzido quimicamente , Hipocinesia/metabolismo , Hipocinesia/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Rotenona/farmacologia
3.
J Inorg Biochem ; 172: 94-99, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28445841

RESUMO

Rat liver mitochondria (1.5-2.1mg protein·mL-1) supplemented with either 25 and 100µM Cu2+ or 100 and 500µM Fe3+ show inhibition of active respiration (O2 consumption in state 3) and increased phospholipid peroxidation . Liver mitochondria were supplemented with the antioxidants reduced glutathione, N-acetylcysteine or butylated hydroxitoluene, to evaluate their effects on the above-mentioned alterations. Although the mitochondrial dysfunction is clearly associated to phospholipid peroxidation, the different responses to antioxidant supplementation indicate that the metal ions have differences in their mechanisms of toxicity. Mitochondrial phospholipid peroxidation through the formation of hydroxyl radical by a Fenton/Haber-Weiss mechanism seems to precede the respiratory inhibition and to be the main fact in Fe-induced mitochondrial dysfunction. In the case of Cu2+, it seems that the ion oxidizes glutathione, and low molecular weight protein thiol groups in a direct reaction, as part of its intracellular redox cycling. The processes involving phospholipid peroxidation, protein oxidation and mitochondrial respiratory inhibition characterize a redox dyshomeostatic situation that ultimately leads to cell death. However, Cu2+ exposure involves an additional, yet unidentified, toxic event as previous reduction of the metal with N-acetylcysteine has only a minor effect in preventing the mitochondrial damage.


Assuntos
Antioxidantes/farmacologia , Respiração Celular/efeitos dos fármacos , Cobre/farmacologia , Ferro/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Cobre/química , Radicais Livres/metabolismo , Íons/farmacologia , Ferro/química , Masculino , Modelos Biológicos , Fosfolipídeos/metabolismo , Ratos
4.
J Inorg Biochem ; 166: 5-11, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815982

RESUMO

Increased copper (Cu) and iron (Fe) levels in liver and brain are associated to oxidative stress and damage with increased phospholipid oxidation process. The aim of this work was to assess the toxic effects of Cu2+ and Fe3+ addition to rat liver mitochondria by determining mitochondrial respiration in states 3 (active respiration) and 4 (resting respiration), and phospholipid peroxidation. Both, Cu2+ and Fe3+ produced decreases in O2 consumption in a concentration-dependent manner in active state 3: both ions by 42% with malate-glutamate as complex I substrate (concentration for half maximal response (C50) 60µM Cu2+ and 1.25mM Fe3+), and with succinate as complex II substrate: 64-69% with C50 of 50µM Cu2+ and with C50 of 1.25mM of Fe3+. Respiratory control decreased with Cu2+ (C50 50µM) and Fe3+ (C50 1.25-1-75mM) with both substrates. Cu2+ produced a 2-fold increase and Fe3+ a 5-fold increase of thiobarbituric acid-reactive substances (TBARS) content from 25µM Cu2+ (C50 40µM) and from 100µM Fe3+ (C50 1.75mM). Supplementations with Cu2+ and Fe3+ ions induce mitochondrial dysfunction with phospholipid peroxidation in rat liver mitochondria. Although is proved that a Fenton/Haber Weiss mechanism of oxidative damage occurs in metal-ion induced mitochondrial toxicity, slightly different responses to the metal ions suggest some differences in the mechanism of intracellular toxicity. The decreased rates of mitochondrial respiration and the alteration of mitochondrial function by phospholipid and protein oxidations lead to mitochondrial dysfunction, cellular dyshomeostasis and cell death.


Assuntos
Cobre/farmacologia , Ferro/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosfolipídeos/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Masculino , Mitocôndrias Hepáticas/patologia , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Food Funct ; 4(3): 448-52, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23235886

RESUMO

Weanling rats fed a choline-deficient diet develop kidney oxidative damage, tubular and cortical kidney necrosis, renal failure and animal death. The effect of dietary menhaden oil was assayed on the mentioned sequence correlating oxidative stress with renal structure and function. Rats were fed ad libitum 4 different diets: (a) a choline-deficient diet with corn oil and sunflower hydrogenated oil as a source of fatty acids; (b) the same diet supplemented with choline; (c) a choline-deficient diet with menhaden oil as a source of fatty acids; and (d) the previous diet supplemented with choline. Animals were sacrificed at days 0, 2, 4 and 7. The histopathological study of the kidneys showed that renal necrosis was only observed at day 7 in choline-deficient rats receiving the vegetable oil diet, simultaneously with increased creatinine plasma levels. Homogenate chemiluminescence (BOOH-initiated chemiluminescence) and phospholipid oxidation indicate the development of oxidative stress and damage in choline-deficient rats fed vegetable oils as well as the protective effect of menhaden oil. Rats fed with the fish oil diet showed that oxidative stress and damage develop later, as compared with vegetable oil, with no morphological damage during the experimental period.


Assuntos
Deficiência de Colina/tratamento farmacológico , Colina/administração & dosagem , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Nefropatias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Doença Aguda , Animais , Deficiência de Colina/complicações , Deficiência de Colina/patologia , Óleo de Milho/administração & dosagem , Creatinina/sangue , Dieta , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/etiologia , Nefropatias/patologia , Masculino , Necrose , Fosfolipídeos/metabolismo , Óleos de Plantas/administração & dosagem , Ratos , Ratos Wistar , Óleo de Girassol
6.
Am J Physiol Regul Integr Comp Physiol ; 300(4): R827-34, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21106913

RESUMO

Rat aging from 4 to 12 mo was accompanied by hippocampus and frontal cortex mitochondrial dysfunction, with decreases of 23 to 53% in tissue and mitochondrial respiration and in the activities of complexes I and IV and of mitochondrial nitric oxide synthase (mtNOS) (P < 0.02). In aged rats, the two brain areas showed mitochondria with higher content (35-78%) of oxidation products of phospholipids and proteins and with higher (59-95%) rates of O(2)(-) and H(2)O(2) production (P < 0.02). Dietary supplementation with vitamin E (2.0 or 5.0 g/kg of food) from 9 to 12 mo of rat age, restored in a dose-dependent manner, the decreases in tissue and mitochondrial respiration (to 90-96%) and complexes I and IV and mtNOS activities (to 86-88%) of the values of 4-mo-old rats (P < 0.02). Vitamin E prevented, by 73-80%, the increases in oxidation products, and by 62-68%, the increases in O(2)(-) and H(2)O(2) production (P < 0.05). High resolution histochemistry of cytochrome oxidase in the hippocampal CA1 region showed higher staining in vitamin E-treated rats than in control animals. Aging decreased (19%) hippocampus mitochondrial mass, an effect that was restored by vitamin E. High doses of vitamin E seem to sustain mitochondrial biogenesis in synaptic areas.


Assuntos
Envelhecimento/fisiologia , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Vitamina E/farmacologia , Animais , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Lobo Frontal/metabolismo , Lobo Frontal/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Mitocôndrias/fisiologia , Modelos Animais , Óxido Nítrico Sintase/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Wistar , Vitamina E/administração & dosagem
7.
IUBMB Life ; 60(5): 308-14, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18421773

RESUMO

Aging of mammalian brain is associated with a continuous decrease of the capacity to produce ATP by oxidative phosphorylation. The impairment of mitochondrial function is mainly due to diminished electron transfer by complexes I and IV, whereas inner membrane H+ impermeability and F1-ATP synthase activity are only slightly affected. Dysfunctional mitochondria in aged rodents show decreased rates of respiration and of electron transfer, decreased membrane potential, increased content of the oxidation products of phospholipids and proteins, and increased size and fragility. In aging mice, the activities of brain mitochondrial enzymes (complexes I and IV and mtNOS) are linearly correlated with neurological performance (tightrope and T-maze tests) and with median life span and negatively correlated with the mitochondrial content of lipid and protein oxidation products. Conditions that increased mice median life span, such as moderate exercise, vitamin E supplementation, caloric restriction, and high spontaneous neurological activity; also improved neurological performance and mitochondrial function in aged brain. The diffusion of mitochondrial NO and H2O2 to the cytosol is decreased in the aged brain and may be a factor for reduced mitochondrial biogenesis.


Assuntos
Envelhecimento/metabolismo , Encefalopatias/metabolismo , Doenças Mitocondriais/metabolismo , Animais , Metabolismo Energético , Humanos , Estresse Oxidativo
8.
Am J Physiol Cell Physiol ; 292(2): C670-86, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17020935

RESUMO

Aged mammalian tissues show a decreased capacity to produce ATP by oxidative phosphorylation due to dysfunctional mitochondria. The mitochondrial content of rat brain and liver is not reduced in aging and the impairment of mitochondrial function is due to decreased rates of electron transfer by the selectively diminished activities of complexes I and IV. Inner membrane H(+) impermeability and F(1)-ATP synthase activity are only slightly affected by aging. Dysfunctional mitochondria in aged rodents are characterized, besides decreased electron transfer and O(2) uptake, by an increased content of oxidation products of phospholipids, proteins and DNA, a decreased membrane potential, and increased size and fragility. Free radical-mediated oxidations are determining factors of mitochondrial dysfunction and turnover, cell apoptosis, tissue function, and lifespan. Inner membrane enzyme activities, such as those of complexes I and IV and mitochondrial nitric oxide synthase, decrease upon aging and afford aging markers. The activities of these three enzymes in mice brain are linearly correlated with neurological performance, as determined by the tightrope and the T-maze tests. The same enzymatic activities correlated positively with mice survival and negatively with the mitochondrial content of lipid and protein oxidation products. Conditions that increase survival, as vitamin E dietary supplementation, caloric restriction, high spontaneous neurological activity, and moderate physical exercise, ameliorate mitochondrial dysfunction in aged brain and liver. The pleiotropic signaling of mitochondrial H(2)O(2) and nitric oxide diffusion to the cytosol seems modified in aged animals and to contribute to the decreased mitochondrial biogenesis in old animals.


Assuntos
Envelhecimento/fisiologia , Metabolismo Energético , Mitocôndrias/fisiologia , Envelhecimento/metabolismo , Animais , Apoptose , Morte Celular , Transporte de Elétrons , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Fosforilação Oxidativa , Estresse Oxidativo , Consumo de Oxigênio , ATPases Translocadoras de Prótons/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Antioxid Redox Signal ; 9(1): 131-41, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17115892

RESUMO

Male mice on a diet supplemented with thioproline (l-thiazolidine-4-carboxylic acid), a physiological metabolite of 5-hydroxytryptamine, at 2.0 g/kg of food from 28 weeks of age and for their entire life, showed a 23-29% increased median and maximal life span. These survival increases were associated with improved neurological functions. Compared to control mice, thioproline-supplemented mice had a 20% lower integral spontaneous food intake, and 10% lower body weight at 100 weeks of age. Body weight showed a statistically significant inverse relationship with survival and neurological performances. Thioproline-supplemented mice exhibited a 58-70% decrease of the age-dependent oxidative damage in brain and liver mitochondria at 52 weeks (old mice) and 78 weeks (senescent mice) of age, respectively. The age-associated decrease of brain mitochondrial enzyme activities, NADH-dehydrogenase, cytochrome c oxidase, and mitochondrial nitric oxide synthase (mtNOS), in old and senescent mice were markedly prevented (51-74%) by thioproline. In vitro, thioproline neither exhibited direct antioxidant activity nor had any effect on the electron transfer or mtNOS functional activities of brain and liver mitochondria. It is surmised that thioproline induces an anorexic effect associated with improved survival and neurological function through a decreased oxidative damage and regulation that may involve hypothalamic appetite centers.


Assuntos
Comportamento Animal , Ingestão de Alimentos , Neurônios/fisiologia , Tiazolidinas/farmacologia , Fatores Etários , Animais , Biomarcadores/análise , Peso Corporal , Suplementos Nutricionais , Feminino , Expectativa de Vida , Masculino , Aprendizagem em Labirinto , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/fisiologia , Oxirredução
10.
Front Biosci ; 12: 1154-63, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127368

RESUMO

Mice with (a) high spontaneous neurological activity, or subjected to (b) moderate exercise or (c) dietary supplemented with high doses of vitamin E from 28 weeks of age to senescence (76 wk of age), showed an increased survival and a retardation in the development of the neurological deficits associated to aging. During aging there was an increase in dysfunctional brain mitochondria, characterized by an increased content of oxidation products and by a diminished functional activity. The mitochondrial oxidative damage observed in adult (52 wk) and senescent mice (76 wk) was partially ameliorated in the groups of animals subject to the mentioned experimental conditions, and this decrease in mitochondrial oxidative damage was related to the improvement in neurological performance. In brain mitochondria, the activities of enzymes that are critical for mitochondrial function (mtNOS, NADH-dehydrogenase, and cytochrome oxidase) decreased progressively during aging and constituted aging markers. Usual clinical recommendations for aged humans, such as increased neurological activity, moderate exercise, and vitamin E supplementation, proved to be effective in increasing mice survival and neurological performances, along with a better mitochondrial function and a lower content of oxidation products.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Animais , Comportamento Animal , Encéfalo/enzimologia , Suplementos Nutricionais , Camundongos , Mitocôndrias/enzimologia , Atividade Motora , Análise de Sobrevida , Vitamina E/administração & dosagem
11.
Methods Enzymol ; 396: 444-55, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16291252

RESUMO

The functional activity of mitochondrial nitric oxide synthase (mtNOS) is determined by inhibiting O2 uptake and by enhancing H2O2 production. The effect of mtNOS activity on mitochondrial O2 uptake is assayed in state 3 respiration in two limit conditions of intramitochondrial NO: at its maximal and minimal levels. The first condition is achieved by supplementation with L-arginine and superoxide dismutase (SOD), and the second by addition of an NOS inhibitor and oxyhemoglobin. The difference between state 3 O2 uptake in both conditions constitutes the mtNOS functional activity in the inhibition of cytochrome oxidase activity. The functional activity of mtNOS in enhancing mitochondrial H2O2 generation in state 4 is given by the NO inhibition of ubiquinol-cytochrome c reductase activity. Simple determinations with the oxygen electrode or the measurement of mitochondrial H2O2 production can be used to assay the effects of physiological and pharmacological treatments on mtNOS activity.


Assuntos
Mitocôndrias/enzimologia , Óxido Nítrico Sintase/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , Óxido Nítrico/biossíntese , Consumo de Oxigênio , Ratos
12.
Am J Physiol Regul Integr Comp Physiol ; 289(5): R1392-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16020519

RESUMO

Male mice receiving vitamin E (5.0 g alpha-tocopherol acetate/kg of food) from 28 wk of age showed a 40% increased median life span, from 61 +/- 4 wk to 85 +/- 4 wk, and 17% increased maximal life span, whereas female mice equally supplemented exhibited only 14% increased median life span. The alpha-tocopherol content of brain and liver was 2.5-times and 7-times increased in male mice, respectively. Vitamin E-supplemented male mice showed a better performance in the tight-rope (neuromuscular function) and the T-maze (exploratory activity) tests with improvements of 9-24% at 52 wk and of 28-45% at 78 wk. The rates of electron transfer in brain mitochondria, determined as state 3 oxygen uptake and as NADH-cytochrome c reductase and cytochrome oxidase activities, were 16-25% and 35-38% diminished at 52-78 wk. These losses of mitochondrial function were ameliorated by vitamin E supplementation by 37-56% and by 60-66% at the two time points considered. The activities of mitochondrial nitric oxide synthase and Mn-SOD decreased 28-67% upon aging and these effects were partially (41-68%) prevented by vitamin E treatment. Liver mitochondrial activities showed similar effects of aging and of vitamin E supplementation, although less marked. Brain mitochondrial enzymatic activities correlated negatively with the mitochondrial content of protein and lipid oxidation products (r2 = 0.58-0.99, P < 0.01), and the rates of respiration and of complex I and IV activities correlated positively (r2 = 0.74-0.80, P < 0.01) with success in the behavioral tests and with maximal life span.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Mitocôndrias/enzimologia , alfa-Tocoferol/metabolismo , Animais , Antioxidantes/análise , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Comportamento Exploratório , Feminino , Fígado/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos , Atividade Motora , NADH Desidrogenase/metabolismo , Óxido Nítrico Sintase/metabolismo , Consumo de Oxigênio , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , alfa-Tocoferol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA