Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Trop Med ; 2023: 6120255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529122

RESUMO

The emergence of multidrug bacterial resistance poses a great public health problem and requires a constant search for new antibacterial agents. However, Niger's flora possesses several medicinal plants used in traditional medicine to cure infectious diseases and can be used as sources of bioactive ingredients. This current study was designed to evaluate the antibacterial activity of eight plants used in the traditional pharmacopeia of Niger. The extracts were prepared by maceration using ethanol, methanol, and distilled water. The obtained extracts were screened against Salmonella spp., Shigella spp., and Escherichia coli using the microdilution method coupled with a resazurin-based assay. Phytochemical screening was performed using colorimetry, while the quantification of total polyphenols, total flavonoids, and total tannins was determined by spectrophotometry. Out of the eight plants obtained, five named Cassia italica, Limeum pterocarpum, Phyllanthus pentandrus, Strychnos innocua, and Ximenia americanum exhibited antibacterial activity with MICs ranging from 500 µg/mL to 2000 µg/mL. Phytochemical screening showed the presence of alkaloids, saponosides, tannins, flavonoids, terpenes/sterols, quinones, and polyphenols. The ethanolic and methanolic extracts of X. americana contained important quantities of total polyphenols, with 43.59 ± 0.15 and 41.97 ± 0.02 mg EAG/100 mg of extract, respectively. These extracts showed the highest contents of total tannins at 46.49 g/L and 45.52 g/L, respectively. For total flavonoids, the highest content was obtained with the methanolic extract of P. pentandrus, with 3.12 ± 0.01 mg QE/100 mg of extract. These findings justify the uses of these plants in traditional medicine for the treatment of infectious diseases such as diarrhea and can be used as starting points for the development of phytodrugs against infectious diarrhea.

2.
Curr Drug Targets ; 24(10): 838-855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469154

RESUMO

BACKGROUND: Human African trypanosomiasis (HAT) is a parasitic infection that may lead to death if left untreated. This disease is caused by a protozoan parasite of the genus Trypanosoma and is transmitted to humans through tsetse fly bites. The disease is widespread across Sub-Saharan Africa, with 70% of cases in recent reports in the Democratic Republic of the Congo and an average of less than 1000 cases are declared annually. Since there is no appropriate treatment for HAT, steroidal and triterpenoid saponins have been reported to be effective in in vitro studies and might serve as scaffolds for the discovery of new treatments against this disease. AIM OF THE STUDY: The present study aimed to summarize up-to-date information on the anti-Trypanosoma brucei activity of steroidal and triterpenoid saponins. The mechanisms of action of in vitro bioactive compounds were also discussed. METHODS: Information on the anti-Trypanosoma brucei activity of plant saponins was obtained from published articles, dissertations, theses, and textbooks through a variety of libraries and electronic databases. RESULTS: There has been incredible progress in the identification of steroidal and triterpenoid saponins with pronounced in vitro activity against Trypanosoma brucei. Indeed, more than forty saponins were identified as having anti-T. brucei effect with activity ranging from moderate to highly active. The mechanisms of action of most of these saponins included DNA damage, cell cycle arrest, induction of apoptosis through downregulation of bcl-2 and MDM2, and upregulation of Bax and Bak, among others. CONCLUSION: Referring to in vitro studies, plant saponins have shown anti-Trypanosoma brucei activity; however, more cytotoxic and in vivo studies and detailed mechanisms of action of the bioactive saponins should be further considered.


Assuntos
Antineoplásicos , Triterpenos , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/tratamento farmacológico , Extratos Vegetais/farmacologia , Antineoplásicos/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
3.
BMC Complement Med Ther ; 23(1): 211, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370061

RESUMO

BACKGROUND: Dacryodes edulis is a plant that belongs to the Burseraceae family. It is widely used traditionally alone or in association with other plants in Cameroonian folk medicine to cure wounds, fever, headaches, and malaria. The aim of this work was to investigate the leaves and stem bark of D. edulis with an emphasis on the antiplasmodial and cytotoxic effects of extracts, fractions, and isolated compounds. METHODS: Extracts, fractions, and some isolated compounds were subjected to antiplasmodial activity screening in vitro against chloroquine-sensitive 3D7 and multidrug resistant Dd2 strains of Plasmodium falciparum using a SyBr Green fluorescence-based assay. The cytotoxicity of active extracts, fractions, and compounds was tested against mammalian Raw cell lines using an in vitro resazurin-based viability assay. The structures of the compounds were determined based on their NMR and MS data. The in vivo toxicity using female BALB/c mice was performed on the most active extract according to the protocol of OECD (2002), guideline 423. RESULTS: The hydroethanolic extract from the leaves of D. edulis displayed good antiplasmodial activity with IC50 values of 3.10 and 3.56 µg/mL respectively on sensitive (3D7) and multiresistant (Dd2) strains of P. falciparum. Of the sixteen compounds isolated, 3,3',4-tri-O-methylellagic acid (4) exhibited the highest antiplasmodial activity against PfDd2 strains with an IC50 value of 0.63 µg/mL. All extracts, fractions, and isolated compounds demonstrated no cytotoxicity against Raw cell lines with CC50 > 250 µg/mL. In addition, the most active extract on both strains of P. falciparum was nontoxic in vivo, with a LD50 greater than 2000 and 5000 mg/kg. A phytochemical investigation of the stem bark and leaves of D. edulis afforded sixteen compounds, including two xanthones (1-2), three ellagic acid derivatives (3-5), one phenolic compound (6), one depside (7), one triglyceride (8), one auranthiamide acetate (9), one gallic acid derivative (10), four triterpenoids (11-14), and two steroids (15-16). Compounds 1, 2, 5, 7, 8, and 9 were herein reported for the first time from the Burseraceae family. CONCLUSION: This work highlights the good in vitro antiplasmodial potency of the hydroethanolic extract of the leaves of this plant and that of two isolated constituents (3,3',4-tri-O-methylellagic acid and ethylgallate) from the plant. These biological results support the use of D. edulis in traditional medicine against malaria.


Assuntos
Antimaláricos , Burseraceae , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Antimaláricos/química , Extratos Vegetais/química , Casca de Planta , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Folhas de Planta/química , Mamíferos
4.
J Ethnopharmacol ; 307: 116209, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36706937

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Detarium microcarpum is used to treat typhoid fever, a major public health problem, by indigenous population in Africa. Though its preventive activities have been documented, the curative effect is still to be confirmed. AIM OF THE STUDY: This study aimed at evaluating the curative effects of the hydroethanolic extract of Detarium microcarpum root bark on Salmonella typhimurium-induced typhoid in rat and exploring the in-silico inhibition of some bacterial key enzymes. STUDY DESIGN: In vitro antioxydant, in vivo antisalmonella of the extract and in silico molecular docking assay on the isolated compounds were carried out to explore the anti-salmonella effects of Detarium microcarpum. MATERIAL AND METHODS: The in vitro antioxidant properties of the extract were evaluated using DPPH, ABTS and FRAP tests. The anti-salmonella activity of the extract was assessed through feacal sample from Salmonella typhimurium-infected rat cultured in Salmonella-Shigella agar (SS agar) medium. The affinity of isolated compounds (Rhinocerotinoic acid and Microcarposide) from the extract were performed on four key enzymes (Adenylosuccinate lyase, Acetyl coenzyme A synthetase, Thymidine phosphorylase and LuxS-Quorum sensor) using molecular docking simulation to elucidate the molecular level inhibition mechanism. RESULTS: Crude extract of D. microcarpum root bark showed variable activities on DPPH (RSa50: 6.09 ± 1.04 µg/mL), ABTS (RSa50: 24.46 ± 0.27), and FRAP (RSa50: 23.30 ± 0.23). The extract at all the doses exhibited significant healing effect of infected rats, with the complete clearance. The extract restored hematological, biochemical and histological parameters closed to the normal control. The molecular docking results indicates that rhinocerotinoic acid and microcarposide present more affinity to the LuxS-Quorum sensor and Acetyl coenzyme A synthetase protein as compared to the others. CONCLUSION: These results demonstrate potent anti-typhoid activities of the hydroethanolic of Detarium microcarpum root bark extract through antioxidant properties and high inhibitory affinity of its compounds on some bacterial key enzymes that justify its use as traditional medicine to typhoid fever.


Assuntos
Fabaceae , Febre Tifoide , Ratos , Animais , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Fabaceae/química , Casca de Planta/química , Acetato-CoA Ligase/análise , Ágar/análise , Bactérias
5.
Planta Med ; 89(1): 86-98, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35868332

RESUMO

In our ongoing research program on the proapoptotic function of saponins, two previously undescribed saponins, named zygiaosides E (1: ) and F (2: ), were isolated from the leaves of Albizia zygia. Their structures were established based on extensive analysis of 1D and 2D NMR data, HR-ESI-MS analysis, and by chemical degradation. The proapoptotic effect of zygiaoside E (1: ) was evaluated on human malignant melanoma (A375), human epidermoid cancer (A431), and normal Homo sapiens skin tissue (TE 353.SK.) cell lines by cytometric analysis. Zygiaoside E (1: ) induced apoptosis of the two human cancer cell lines (A375 and A431) in a dose-dependent manner at 1 µM but did not induce apoptosis in noncancerous skin cells (TE 353.Sk), even when treated with concentrations up to 15 µM. The underlying mechanism of the apoptosis induction activity of zygiaoside E (1: ) on the mitochondrial membrane potential status in A375 cells was further assessed by monitoring the uptake rate of DiOC6, a mitochondrial specific and voltage-dependent fluorescent dye. The number of malignant melanoma cells emitting high fluorescence levels was decreased when cells were treated with 3 or 5 µM of zygiaoside E (1: ) during either 12 or 24 h, thereby revealing a drop of mitochondrial membrane potential in A375 cells upon treatment, which indicated mitochondrial perturbation.


Assuntos
Albizzia , Melanoma , Saponinas , Triterpenos , Humanos , Albizzia/química , Triterpenos/farmacologia , Linhagem Celular Tumoral , Saponinas/farmacologia , Saponinas/química , Apoptose , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Potencial da Membrana Mitocondrial
6.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557952

RESUMO

Medicinal plants are known as sources of potential antimicrobial compounds belonging to different classes. The aim of the present work was to evaluate the antimicrobial potential of the crude extract, fractions, and some isolated secondary metabolites from the leaves of Macaranga occidentalis, a Cameroonian medicinal plant traditionally used for the treatment of microbial infections. Repeated column chromatography of the ethyl acetate and n-butanol fractions led to the isolation of seventeen previously known compounds (1-17), among which three steroids (1-3), one triterpene (4), four flavonoids (5-8), two stilbenoids (9 and 10) four ellagic acid derivatives (11-14), one geraniinic acid derivative (15), one coumarine (16), and one glyceride (17). Their structures were elucidated mainly by means of extensive spectroscopic and spectrometric (1D and 2D NMR and, MS) analysis and comparison with the published data. The crude extract, fractions, and isolated compounds were all screened for their antimicrobial activity. None of the natural compounds was active against Candida strains. However, the crude extract, fractions, and compounds showed varying levels of antibacterial properties against at least one of the tested bacterial strains, with minimal inhibitory concentrations (MICs) ranging from 250 to 1000 µg/mL. The n-butanol (n-BuOH) fraction was the most active against Escherichia coli ATCC 25922, with an MIC value of 250 µg/mL. Among the isolated compounds, schweinfurthin B (10) exhibited the best activity against Staphylococcus aureus NR 46003 with a MIC value of 62.5 µg/mL. In addition, schweinfurthin O (9) and isomacarangin (6) also exhibited moderate activity against the same strain with a MIC value of 125 µg/mL. Therefore, pharmacomodulation was performed on compound 6 and three new semisynthetic derivatives (6a-c) were prepared by allylation and acetylation reactions and screened for their in vitro antimicrobial activity. None of the semisynthetic derivatives showed antimicrobial activity against the same tested strains. The chemophenetic significance of the isolated compounds is also discussed in this paper.


Assuntos
Anti-Infecciosos , Euphorbiaceae , 1-Butanol , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Testes de Sensibilidade Microbiana
7.
J Ethnopharmacol ; 296: 115512, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788037

RESUMO

ETHNOPHARMACOLOGICAL SIGNIFICANCE: Medicinal plants from the Terminalia genus are widely used as remedies against many infectious diseases, including malaria. As such, Terminalia ivorensis A. Chev. and Terminalia brownii Fresen. are famous due to their usefulness in traditional medicines to treat malaria and yellow fever. However, further information is needed on the extent of anti-Plasmodium potency of extracts and fractions from these plants and their phytochemical profile. AIM OF THE STUDY: This study was designed to investigate the in vitro antiplasmodial activity and to determine the chemical profile of promising extracts and fractions from T. ivorensis and T. brownii stem bark. MATERIALS AND METHODS: Crude aqueous, ethanolic, methanolic, hydroethanolic and ethyl acetate extracts were prepared by maceration from the stem barks of T. brownii and T. ivorensis. They were subsequently tested against chloroquine-sensitive (Pf3D7) and multidrug-resistant (PfDd2) strains of P. falciparum using the parasite lactate dehydrogenase (PfLDH) assay. Extracts showing very good activity on both plasmodial strains were further fractionated using column chromatography guided by evidence of antiplasmodial activity. All bioactive extracts and fractions were screened for their cytotoxicity on Vero and Raw cell lines using the resazurin-based assay and on erythrocytes using the hemolysis assay. The phytochemical profiles of selected potent extracts and fractions were determined by UPLC-QTOF-MS analysis. RESULTS: Of the ten extracts obtained from both plant species, nine showed inhibitory activity against both P. falciparum strains (Pf3D7 and PfDd2), with median inhibitory concentration (IC50) values ranging from 0.13 µg/ml to 10.59 µg/ml. Interestingly, the aqueous extract of T. ivorensis (TiW) and methanolic extract of T. brownii (TbM) displayed higher antiplasmodial activities against both strains (IC50 0.13-1.43 µg/ml) and high selectivity indices (SI > 100). Their fractionation led to two fractions from T. ivorensis and two from T. brownii that showed very promising antiplasmodial activity (IC50 0.15-1.73 µg/mL) and SI greater than 100. The hemolytic assay confirmed the safety of crude extracts and fractions on erythrocytes. UPLC-MS-based phytochemical analysis of the crude aqueous extract of T. ivorensis showed the presence of ellagic acid (1) and leucodelphidin (2), while analysis of the crude methanol extract of T. brownii showed the presence of ellagic acid (1), leucodelphinidin (2), papyriogenin D (3), dihydroactinidiolide (4) and miltiodiol (5). CONCLUSIONS: The extracts and fractions from T. ivorensis and T. brownii showed very good antiplasmodial activity, thus supporting the traditional use of the two plants in the treatment of malaria. Chemical profiling of the extracts and fractions led to the identification of chemical markers and the known antimalarial compound ellagic acid. Further isolation and testing of other pure compounds from the active fractions could lead to the identification of potent antiplasmodial compounds.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plasmodium , Terminalia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ácido Elágico/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais , Plasmodium falciparum , Espectrometria de Massas em Tandem , Terminalia/química
8.
PLoS One ; 17(5): e0267246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544583

RESUMO

Urinary tract infections (UTIs) are common bacterial infections. The global emergence of multidrug-resistant uropathogens in the last decade underlines the need to search for new antibiotics with novel mechanisms of action. In this regard, exploring endophytic fungi inhabiting medicinal plants used locally against urinary tract infections could be a promising strategy for novel drug discovery. This study investigates crude metabolites from endophytic fungi isolated from Annona muricata as potential sources of antibiotic drugs to fight against uropathogens and reduce related oxidative stress. Crude ethyl acetate extracts from 41 different endophytic fungi were screened against three bacterial strains using the broth microdilution method, and fungi producing active crude extracts were identified using ITS1-5.8S rRNA-ITS2 nucleotide sequences. The antibacterial modes of action of the five most active extracts were evaluated using Staphylococcus aureus ATCC 43300 and Klebsiella oxytoca strains. The DPPH and FRAP assays were used to investigate their antioxidant activity, and their cytotoxicity against the Vero cell line was evaluated using the MTT assay. Out of the 41 crude extracts tested, 17 were active with minimum inhibitory concentrations (MICs) ranging from 3.125 µg/mL to 100 µg/mL and were not cytotoxic against Vero cell lines with a cytotoxic concentration 50 (CC50) >100 µg/mL. The more potent extracts (from Fusarium waltergamsii AMtw3, Aspergillus sp. AMtf15, Penicillium citrinum AMf6, Curvularia sp. AMf4, and Talaromyces annesophieae AMsb23) significantly inhibited bacterial catalase activity, lysed bacterial cells, increased outer membrane permeability, and inhibited biofilm formation, and the time-kill kinetic assay revealed concentration-dependent bactericidal activity. All seventeen extracts showed weak ferric iron-reducing power (1.06 to 12.37 µg equivalent NH2OH/g of extract). In comparison, seven extracts exhibited DPPH free radical scavenging activity, with RSA50 ranging from 146.05 to 799.75 µg/mL. The molecular identification of the seventeen active fungi revealed that they belong to six distinct genera, including Aspergillus, Curvularia, Fusarium, Meyerozyma, Penicillium, and Talaromyces. This investigation demonstrated that fungal endophytes from Cameroonian Annona muricata, a medicinal plant used locally to treat bacterial infections, might contain potent antibacterial metabolites with multiple modes of action. The antibacterial-guided fractionation of these active extracts is currently ongoing to purify and characterise potential antibacterial active ingredients.


Assuntos
Annona , Plantas Medicinais , Infecções Urinárias , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias , Camarões , Misturas Complexas , Endófitos , Feminino , Fungos , Humanos , Masculino , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Plantas Medicinais/microbiologia
9.
Anal Biochem ; 648: 114669, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321819

RESUMO

Antimalarial drug discovery has been facilitated by the development of various in vitro drug susceptibility testing methods suitable for medium-throughput or high-throughput campaigns. Among many, the Plasmodium falciparum lactate dehydrogenase (PfLDH) assay has acceptable demand on equipment, labour, technical skills and affordability and offers a good opportunity for scientists in low- and middle-income countries to participate in the global effort of discovering future antimalarial drugs. Hence, to enable our search for novel antimalarial drugs, we implemented and examined assay conditions and validated the PfLDH-based method in our laboratory using a reference set of standard antimalarial drugs with known activity against Plasmodium falciparum strains. The PfLDH assay revealed acceptable linearity profiles of R2 = 0.97 and 0.92 for Pf3D7 and PfDd2, respectively, achieved at 2% parasitaemia and 1% haematocrit. The detection and quantitation limits (DL and QL) of the PfLDH-based assay were 0.09% and 0.4% parasitemia, respectively. The assay showed an acceptable average Z-factor between 0.76 and 0.79 and was considerably robust. The average interassay reproducibility via percent coefficient of variation (%CV) was 5.47 between independent experiments. Overall, the PfLDH-based method produced a reliable and reproducible drug screening profile for in vitro assays in our setting. There were no significant interassay variability or hazards of other screening assays.


Assuntos
Antimaláricos , Malária Falciparum , Mycobacterium tuberculosis , Plasmodium , Antimaláricos/farmacologia , Colorimetria , Avaliação Pré-Clínica de Medicamentos , Humanos , L-Lactato Desidrogenase , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Testes de Sensibilidade Microbiana , Plasmodium falciparum , Reprodutibilidade dos Testes
10.
Nat Prod Res ; 36(1): 246-255, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32530301

RESUMO

The ethyl acetate fraction, the stem bark and the residual methanolic extracts from the leaves of Cola heterophylla (Sterculiaceae) led to the isolation of two new compounds: Heterophynone (1) and methyl ester of Colic acid (6), along with four known triterpenes: betulinic acid (2), oleanolic acid (3), ursolic acid (4) and chletric acid (5). Structures of compounds were established by different spectroscopic methods that included 1D and 2D NMR experiment. The antimicrobial activity of isolated compounds was evaluated against two yeasts, Candida Albicans NR 29456 and Candida Krusei 1415; and five Gram-positive bacterial, Salmonella enteric Serovar Muenchem, Salmonella enteric Serovar Thyphimurium, Staphylococcus aureus NR 46003, Staphylococcus aureus NR46374 and Pseudomonas aeruginosa HM 601). Among tested compounds, Heterophynone was found to be the most active with significant antimicrobial activity against Salmonella enteric Serovar Thyphimurium (MIC = 7.82 µg/mL and MBC = 62.5 µg/mL) and good activity against Candida Albicans NR 29456 (MIC = 62.5 µg/mL).


Assuntos
Anti-Infecciosos , Cola/química , Ésteres , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Folhas de Planta/química
11.
J Ethnopharmacol ; 285: 114909, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902534

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia mantaly (H. Perrier) and Terminalia superba (Engl. & Diels) are sources of treatment for various diseases, including malaria and/or related symptoms in parts of Southwestern Cameroon. However, there is limited information on the extent of the antiplasmodial potential of their extracts. AIM OF THE STUDY: The present study was designed to investigate the antiplasmodial potential of chromatographic sub fractions (SFs) from promising fractions of Terminalia mantaly (Tm) [TmsbwChl, the chloroform fraction from water extract of Tm, IC50 (µg/mL) PfINDO: 0.56, Pf3D7: 1.12; SI > 357 (HEK/PfINDO) & 178 (HEK/Pf3D7)] and Terminalia superba (Ts) [TsrmEA, the ethyl acetate fraction from methanolic extract of Ts, IC50 (µg/mL) PfINDO: 1.82, Pf3D7: 1.65; SI > 109 (HEK/PfINDO) & 121 (HEK/Pf3D7)] obtained from previous studies. The SFs were tested against Plasmodium falciparum 3D7 (Pf3D7-chloroquine sensitive) and INDO (PfINDO-chloroquine resistant) strains in culture. Also, the phytochemical profile of potent SFs was determined and finally, the inhibition of the asexual blood stages of Plasmodium falciparum by the SFs with the highest promise was assessed. MATERIAL AND METHODS: Selected SFs were submitted to a second bio-guided fractionation using silica gel column chromatography. The partial phytochemical composition of potent antiplasmodial SFs was determined using gas chromatography coupled to mass spectrometry (GC-MS). The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence or absence of extracts. Microscopy and flow cytometry counting was used to assess the Plasmodium falciparum stage-specific inhibition and post-drug exposure growth suppression by highly potent extracts. RESULTS: Twenty-one of the 39 SFs afforded from TmsbwChl showed activity (IC50: 0.29-4.74 µg/mL) against both Pf3D7 and PfINDO strains. Of note, eight SFs namely, Tm25, Tm28-30, Tm34-36 and Tm38, exerted highly potent antiplasmodial activity (IC50 < 1 µg/mL) with IC50PfINDO: 0.41-0.84 µg/mL and IC50Pf3D7: 0.29-0.68 µg/mL. They also displayed very high selectivity (50 < SIPfINDO, SIPf3D7 > 344) on the two Plasmodial strains. On the other hand, 7 SFs (SFs Ts03, Ts04, Ts06, Ts09, Ts10, Ts12 and Ts13) from TsrmEA showed promising inhibitory potential against both parasite strains (IC50: 2.01-5.14 µg/mL). Sub fraction Tm36 (IC50PfINDO: 0.41 µg/mL, SIPfINDO > 243; IC50Pf3D7: 0.29 µg/mL, SIPf3D7 > 344) showed the highest promise. The GC-MS analysis of the 8 selected SFs led to the identification of 99 phytometabolites, with D-limonene (2), benzaldehyde (12), carvone (13), caryophyllene (35), hexadecanoic acid, methyl ester (74) and 9-octadecenoic acid, methyl ester (82) being the main constituents. Sub fractions Tm28, Tm29, Tm30, Tm36 and Tm38 inhibited all the three intraerythrocytic stages of P. falciparum, with strong potency against ring stage development, merozoite egress and invasion processes. CONCLUSIONS: This study has identified highly potent antiplasmodial SFs from Terminalia mantaly with significant activity on the intraerythrocytic development of Plasmodium falciparum. These SFs qualify as promising sources of novel antiplasmodial lead compounds. Further purification and characterization studies are expected to unravel molecular targets in rings and merozoites.


Assuntos
Antimaláricos/farmacologia , Merozoítos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Terminalia/química , Antimaláricos/química , Células HEK293 , Humanos , Fitoterapia , Extratos Vegetais/química
12.
Biomed Res Int ; 2021: 6697973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327237

RESUMO

Emerging drug-resistant bacteria creates an urgent need to search for antibiotics drugs with novel mechanisms of action. Endophytes have established a reputation as a source of structurally novel secondary metabolites with a wide range of biological activities. In the present study, we explore the antibacterial potential of endophytic fungi isolated from different tissues of Terminalia mantaly, Terminalia catappa, and Cananga odorata. The crude ethyl acetate extracts of 56 different endophytic fungi were screened against seven bacterial strains using the broth microdilution method. The antibacterial modes of action of the most active extracts (04) were evaluated using E. coli ATCC 25922 and H. influenzae ATCC 49247 strains. Both the DPPH and FRAP assays were used to investigate their antioxidant activity, and their cytotoxicity against the Vero cell line was evaluated using the MTT assay. Out of the 56 crude extracts tested, about 13% were considered very active, 66% partially active, and 21% nonactive against all tested bacterial strains with MIC values ranging from 0.32 µg/mL to 25 µg/mL. The four more potent extracts (MIC <5 µg/mL) (from Aspergillus sp. N454, Aspergillus sp. N13, Curvularia sp. N101, and Aspergillus sp. N18) significantly lysed the bacteria cells, increased outer membrane permeability, reduced salt tolerance, and inhibited bacterial catalase activity. They exhibited a DPPH free radical scavenging activity with IC50 ranging from 150.71 to 936.08 µg/mL. Three of the four potent extracts were noncytotoxic against the Vero cells line (CC50 > 100 µg/mL). Results from this investigation demonstrated that endophytes from Cameroonian medicinal plants might content potent antibacterial metabolites. The bioguided fractionation of these potent extracts is ongoing to isolate and characterise potential active ingredients.


Assuntos
Antibacterianos/farmacologia , Cananga/microbiologia , Endófitos/química , Fungos/química , Terminalia/microbiologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/química , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nucleotídeos/metabolismo , Picratos/química , Tolerância ao Sal/efeitos dos fármacos
13.
Biomed Res Int ; 2021: 1584141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222467

RESUMO

Microbial infections are increasing worldwide, and the widespread emergence of antibiotic-resistant pathogens poses a severe threat to public health. Medicinal plants are well-known sources of bioactive ingredients. This study was designed to determine the antimicrobial and antioxidant activities of extracts from Platycerium stemaria. The serial exhaustive extraction method using a solvent of increasing polarity from nonpolar (hexane) to polar (water) was designed to prepare crude extracts; liquid-liquid partition was used to fractionate of active extracts. The extracts and fractions were screened for antimicrobial activity on bacteria and yeasts using the microdilution method. The antioxidant activity was done using DPPH and FRAP assays. Out of the sixteen extracts screened, four (PsHex, PsH2O(H), PsMeOH(EA), and PsMeOH) exhibited potency with minimal inhibitory concentration (MIC) values ranging from 31.25 to 500 µg/mL. Out of the four extracts, two, including PsMeOH and PsMeOH(EA), exhibited DPPH radical scavenging activity with the antiradical power of 8.94 × 10-5 and 47.96 × 10-5, respectively, and ferric reducing antioxidant power values ranging from 0.34 to 61.53 µg equivalent Vit C/g of extract. The phytochemical screening of the promising crude extracts revealed flavonoids, glycosides, phenols, tannins, terpenoids, saponins, and anthraquinones. This study reports the antimicrobial and antioxidant activities of P. stemaria for the first time. The results showed that the serial exhaustive extraction approach used in this study allowed capturing the antimicrobial and antioxidant metabolites beyond the single extraction, indicating the need for a rigorous choice of an appropriate solvent and method for extracting P. stemaria. Further investigation is needed to characterize the active ingredients present in the promising extracts.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Polypodiaceae/metabolismo , Antioxidantes/química , Compostos de Bifenilo , Candida albicans , Hexanos/química , Técnicas In Vitro , Concentração Inibidora 50 , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos , Picratos , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais , Shigella flexneri , Solventes/química , Especificidade da Espécie , Staphylococcus aureus , Água/química
14.
BMC Complement Med Ther ; 21(1): 180, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187456

RESUMO

BACKGROUND: Endodesmia calophylloides and Hymenostegia afzelii belong to the Guttiferae and Caesalpiniaceae plant families with known uses in African ethno-medicine to treat malaria and several other diseases. This study aimed at identifying antiplasmodial natural products from selected crude extracts from H. afzelii and E. calophylloides and to assess their cytotoxicity. METHODS: The extracts from H. afzelii and E. calophylloides were subjected to bioassay-guided fractionation to identify antiplasmodial compounds. The hydroethanol and methanol stem bark crude extracts, fractions and isolated compounds were assessed for antiplasmodial activity against the chloroquine-sensitive 3D7 and multi-drug resistant Dd2 strains of Plasmodium falciparum using the SYBR green I fluorescence-based microdilution assay. Cytotoxicity of active extracts, fractions and compounds was determined on African green monkey normal kidney Vero and murine macrophage Raw 264.7 cell lines using the Resazurin-based viability assay. RESULTS: The hydroethanolic extract of H. afzelii stem bark (HasbHE) and the methanolic extract of E. calophylloides stem bark (EcsbM) exhibited the highest potency against both Pf3D7 (EC50 values of 3.32 ± 0.15 µg/mL and 7.40 ± 0.19 µg/mL, respectively) and PfDd2 (EC50 of 3.08 ± 0.21 µg/mL and 7.48 ± 0.07 µg/mL, respectively) strains. Both extracts showed high selectivity toward Plasmodium parasites (SI > 13). The biological activity-guided fractionation led to the identification of five compounds (Compounds 1-5) from HasbHE and one compound (Compound 6) from EcsbM. Of these, Compound 1 corresponding to apigenin (EC50 Pf3D7, of 19.01 ± 0.72 µM and EC50 PfDd2 of 16.39 ± 0.52 µM), and Compound 6 corresponding to 3,3'-O-dimethylellagic acid (EC50 Pf3D7 of 4.27 ± 0.05 µM and EC50 PfDd2 of 1.36 ± 0.47 µM) displayed the highest antiplasmodial activities. Interestingly, both compounds exhibited negligible cytotoxicity against both Vero and Raw 264.7 cell lines with selectivity indices greater than 9. CONCLUSIONS: This study led to the identification of two potent antiplasmodial natural compounds, 3,3'-O-dimethylellagic acid and apigenin that could serve as starting points for further antimalarial drug discovery.


Assuntos
Antimaláricos/análise , Apigenina/análise , Ácido Elágico/análise , Extratos Vegetais/química , Animais , Linhagem Celular , Chlorocebus aethiops , Macrófagos/efeitos dos fármacos , Camundongos , Casca de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Células Vero/efeitos dos fármacos
15.
BMC Complement Med Ther ; 21(1): 106, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789661

RESUMO

BACKGROUND: Plants represent an intricate and innovative source for the discovery of novel therapeutic remedies for the management of infectious diseases. The current study aimed at discovering new inhibitors of Leishmania spp., using anti-leishmanial activity-guided investigation approach of extracts from Diospyros gracilescens Gürke (1911) (Ebenaceae), targeting the extracellular (promastigotes) and intracellular (amastigotes) forms of Leishmania donovani. METHODS: The plant extracts were prepared by maceration using H20: EtOH (30:70, v/v) and further fractionated using a bio-guided approach. Different concentrations of D. gracilescens extracts, fractions and isolated compounds were tested in triplicate against L. donovani promastigotes and amastigotes in vitro. The antileishmanial potency and cytotoxicity on RAW 264.7 cells were determined using the resazurin colorimetric assay. The time kill kinetic profile of the most active sample was also investigated. The structures of all compounds were elucidated on the basis of extensive spectroscopic analyses, including 1D and 2D NMR, and HR-ESI-MS and by comparison of their data with those reported in the literature. RESULTS: The hydroethanolic crude extract of D. gracilescens trunk showed the most potent antileishmanial activity (IC50 = 5.84 µg/mL). Further fractionation of this extract led to four (4) fractions of which, the hexane fraction showed the most potent activity (IC50 = 0.79 µg/mL), and seven (07) compounds that exhibited moderate potency (IC50 = 13.69-241.71 µM) against L. donovani. Compound 1-deoxyinositol (7) inhibited the promastigote and amastigote forms of L. donovani with IC50 values of 241.71 µM and 120 µM respectively and also showed the highest selectivity against L. donovani promastigotes (SI > 5.04). To the best of our knowledge, the antileishmanial activity of this compound is being reported here for the first time. The promising hexane fraction showed significant inhibition of parasites growth at different concentrations, but with no evidence of cidal effect over an exposure period of 120 h. CONCLUSIONS: The results obtained indicated that the hydroethanolic extract from the D. gracilescens trunk and the derived hexane fraction have very potent inhibitory effect on cultivated promastigotes and amastigotes of L. donovani parasite. The isolated compounds showed a lesser extent of potency and selectivity. However, further structure-activity-relationship studies of 1-deoxyinositol could lead to more potent and selective hit derivatives of interest for detailed drug discovery program against visceral leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Diospyros/química , Leishmania donovani/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Camarões , Camundongos , Compostos Fitoquímicos/farmacologia , Células RAW 264.7
16.
Nat Prod Res ; 35(24): 5732-5736, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33244992

RESUMO

Phytochemical study of Uvaria comperei afforded an alkaloid, 8,9-dimethoxy-5H-phenanthridin-6-one (1), isolated and characterised (assignment of 1H and 13C NMR) for the first time from a natural source along with two flavonoids, (2S)-5-hydroxy-7,8-dimethoxyflavanone (2) and (2S)-7-hydroxy-5-methoxy-6,8-dimethylflavone (3). Clethric acid (4), oleanoic acid (5), ß-sitosterol 3-O-ß-D-glucopyranoside (9), ß-sitosterol palmitate (6) and a mixture of stigmasterol (7) and ß-sitosterol (8) were isolated from Oxyanthus unilocularis. The structures of these compounds were elucidated using modern spectroscopic techniques including1D and 2D Nuclear Magnetic Resonance (NMR) Spectroscopy (1H, 13C, 1H-1H COSY, HSQC, HMBC) and Mass Spectrometry. Some fractions and compounds from Uvaria comperei exhibited good antifungal activity against clinical isolates and standard strains of yeast species of Candida and Cryptococcus genera while extracts from Oxyanthus unilocularis displayed weak antifungal activity. The results obtained show that Uvaria comperei could be a potential source of antifungal drugs.


Assuntos
Annonaceae , Rubiaceae , Uvaria , Antifúngicos/farmacologia , Estrutura Molecular , Extratos Vegetais/farmacologia
17.
J Ethnopharmacol ; 269: 113672, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33301916

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia catappa L. (West Indian-Almond) is a medicinal plant used in traditional medicine for the treatment of infectious diseases. Moreover, various organic extracts prepared from this plant have been reported to exhibit antiplasmodial activity. AIM OF THE STUDY: The need for new antimalarials is still an urgency driven by the alarmingly high burden of malaria in endemic regions, with multitude of people dying annually. We have previously identified an endophytic fungus Aspergillus niger 58 harboured by T. catappa as having promising specialized secondary metabolites against the malaria parasites. In the present study, we report the antiplasmodial activity-guided chromatographic isolation of some metabolites secreted by this endophytic fungus. MATERIALS AND METHODS: The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence and absence of inhibitors and results were validated by microscopic analysis of Giemsa-stained culture smears. Giemsa-stain microscopy was also used to study the cell cycle stage-specific action of selected fractions. RESULTS: The results revealed that the multidimensional purification of the crude extract (IC50: 4.03 µg/mL) provided RPHPLC F17 (IC50: 0.09 µg/mL) and RPHPLC F18 (IC50: 0.1 µg/mL) with activity against P. falciparum 3D7 (Pf3D7) strain. Moreover, both fractions at IC99 (0.5 µg/mL) exhibited multi-stages action by targeting all the three stages of the life cycle of blood-stage Pf3D7. Two compounds, flavasperone (1) and aurasperone A (2) were isolated, of which aurasperone A exhibited good potency against Pf3D7 (IC50: 4.17 µM) and P. falciparum INDO (PfINDO) (IC50: 3.08 µM). CONCLUSION: Our study adds credence to the notion that endophytic extracts are potential storehouses for potent specialized secondary metabolites that can be harnessed to fight the malaria parasite and reduce the burden of this disease worldwide. An endophyte that can be cultured in laboratory with ability to secrete promising metabolites of medicinal value holds the promise of conserving Nature from the threat of annihilation of flora for medicinal purposes.


Assuntos
Antimaláricos/metabolismo , Antimaláricos/farmacologia , Aspergillus niger/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Terminalia/metabolismo , Antimaláricos/isolamento & purificação , Aspergillus niger/isolamento & purificação , Células HEK293 , Humanos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Plasmodium falciparum/fisiologia
18.
J Ethnopharmacol ; 260: 113049, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32534119

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Typhoid fever treatment remains a challenge in endemic countries. Detarium microcarpum is traditionally used to manage typhoid. AIM OF THE STUDY: The study aims to explore the efficacy of hydroethanolic extract of Detarium microcarpum root bark in rats infected with salmonella. MATERIAL AND METHODS: The phytochemical profile of the extract was obtained by UHPLC-MS analysis in an attempt of standardization. The in vitro antimicrobial activity was determined using broth dilution method. Salmonella infection was induced by oral administration of S. thyphimurium to immunosuppressed rats. Infected rats were then treated 2 h later with the extract (75, 150 and 300 mg/kg), distilled water (normal and salmonella control) and ciprofloxacin (8 mg/kg) for control. Body weight was monitored and stools were cultured to determine the number of colony-forming units. At the end of treatment, animals were sacrificed, blood and organs were collected for hematological, biochemical and histopathological analyses. RESULTS: Detarium microcarpum extract as well as the isolated compound (rhinocerotinoic acid) exhibited good antimicrobial activity in vitro with bacteriostatic effects. The plant extract significantly (p < 0.05) inhibited the bacterial development in infected animals with an effective dose (ED50) of 75 mg/kg. In addition, the extract prevented body weight loss, hematological, biochemical and histopathological damages in treated rats. CONCLUSION: Detarium microcarpum extract possesses antisalmonella properties justifying its traditional use for the typhoid fever management.


Assuntos
Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Fabaceae , Compostos Fitoquímicos/farmacologia , Casca de Planta , Extratos Vegetais/farmacologia , Raízes de Plantas , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Animais , Antibacterianos/isolamento & purificação , Carga Bacteriana , Modelos Animais de Doenças , Etanol/química , Fabaceae/química , Feminino , Masculino , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/isolamento & purificação , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Ratos Wistar , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/patogenicidade , Solventes/química
19.
Int J Nanomedicine ; 14: 9031-9046, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819417

RESUMO

BACKGROUND: The global increase in outbreaks and mortality rates associated with multi-drug-resistant (MDR) bacteria is a major health concern and calls for alternative treatments. Natural-derived products have shown potential in combating the most dreadful diseases, and therefore serve as an effective source of bioactive compounds that can be used as anti-bacterial agents. These compounds are able to reduce metal ions and cap nanoparticles to form biogenic nanoparticles (NPs) with remarkable anti-bacterial activities. This study explores the use of Terminalia mantaly (TM) extracts for the synthesis of biogenic silver NPs (TM-AgNPs) and the evaluation of their antibacterial activity. METHODS: TM-AgNPs were synthetized by the reduction of AgNO3 with aqueous and methanolic TM extracts. UV-visible (UV-vis) spectrophotometry, Dynamic Light Scattering (DLS), Transmission Electron Microscopy, and Fourier Transform Infrared (FTIR) analyses were used to characterise the TM-AgNPs. Anti-bacterial activity of the TM extracts and TM-AgNPs was evaluated against eight bacterial strains using the broth microdilution assay. The growth inhibitory kinetics of the bio-active TM-AgNPs was assessed on susceptible strains for a period of 8 hrs. RESULTS: Polycrystalline biogenic AgNPs with anisotropic shapes and diameter range of 11 to 83 nm were synthesized from the TM extracts. The biogenic TM-AgNPs showed significant antibacterial activity compared to their respective extracts. The MIC values for TM-AgNPs and extracts were 3 and 125 µg/mL, respectively. Biogenic AgNPs synthesised from the aqueous TM leaf extract at 25°C (aTML-AgNPs-25°C) showed significant antibacterial activity against all the bacterial strains tested in this study. Their bactericidal effect was particularly higher against the Streptococcus pneumoniae and Haemophilus influenzae. CONCLUSION: This study demonstrated the ability of TM extracts to synthesize biogenic AgNPs. The NPs synthesized from the aqueous TM extracts demonstrated higher antibacterial activity against the tested microorganisms compared to the methanolic extracts. Studies are underway to identify the phytochemicals involved in NP synthesis and their mechanism of action.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/farmacologia , Terminalia/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Difusão Dinâmica da Luz , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Ethnopharmacol ; 235: 111-121, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30738118

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Annona muricata (Annonaceae) is a commonly used medicinal plants in Cameroonian traditional medicines to treat various diseases including malaria. Previous studies have shown that extracts from this plant have antiplasmodial activity. AIM OF THE STUDY: This study aimed to explore the endophyic fungi associated with some parts of this plant for their ability to produce antiplasmodial metabolites. MATERIALS AND METHODS: One hundred and fifty-two endophytic fungi isolated from twelve different organs of A. muricata were cultured and the ethyl acetate extracts of conditioned media screened for antiplasmodial activity using the 96-well microtiter plate format SYBR green florescence assay against Chloroquine-sensitive Pf3D7 and Chloroquine-resistant PfINDO/PfDd2 strains of Plasmodium falciparum. RESULTS: Twenty-seven (17.76%) of fungi tested were found to completely inhibit the growth of Plasmodium parasites at 10 µg/mL. The 5.8S rDNA sequencing data revealed the strongly active (IC50 < 2 µg/mL against at least 2 P. falciparum strains) isolates to be Trichoderma afroharzianum AMrb7, Penicillium citrinum AMrb11, Neocosmospora rubicola AMb22, Penicillium tropicum AMb3, Penicillium citrinum AMrb23, Aspergillus versicolor AMb7, and Fusarium sp AMst1. Of these, the extracts from Penicillium citrinum AMrb11 (IC50 0.84-0.93 µg/mL) and Neocosmospora rubicola AMb22 (IC50 0.39-1.92 µg/mL) showed the highest promise against all three plasmodial strains with selectivity indices ranging from 34.71 to 180.97. Dynamic head space GC-MS analysis of ethyl acetate extracts of promising fungi revealed broad-spectrum antimicrobial compounds such as Penicidin, Aromadendrene, Ethyl p-methoxycinnamate, 2-Coumaranone and 2-Methyl resorcinol. CONCLUSION: These results have opened new avenues for discovery of novel antimalarial lead compounds from endophytic fungi associated with Annona muricata - a medicinally important plant.


Assuntos
Annona/microbiologia , Antimaláricos/farmacologia , Fungos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/administração & dosagem , Antimaláricos/isolamento & purificação , Camarões , Cloroquina/farmacologia , Descoberta de Drogas/métodos , Endófitos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Concentração Inibidora 50 , Medicinas Tradicionais Africanas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA