Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 202(2): 441-450, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552163

RESUMO

Zinc deficiency causes immune dysfunction. In T lymphocytes, hypozincemia promotes thymus atrophy, polarization imbalance, and altered cytokine production. Zinc supplementation is commonly used to boost immune function to prevent infectious diseases in at-risk populations. However, the molecular players involved in zinc homeostasis in lymphocytes are poorly understood. In this paper, we wanted to determine the identity of the transporter responsible for zinc entry into lymphocytes. First, in human Jurkat cells, we characterized the effect of zinc on proliferation and activation and found that zinc supplementation enhances activation when T lymphocytes are stimulated using anti-CD3/anti-CD28 Abs. We show that zinc entry depends on specific pathways to correctly tune the NFAT, NF-κB, and AP-1 activation cascades. Second, we used various human and murine models to characterize the zinc transporter family, Zip, during T cell activation and found that Zip6 was strongly upregulated early during activation. Therefore, we generated a Jurkat Zip6 knockout (KO) line to study how the absence of this transporter affects lymphocyte physiology. We found that although Zip6KO cells showed no altered zinc transport or proliferation under basal conditions, under activation, these KO cells showed deficient zinc transport and a drastically impaired activation program. Our work shows that zinc entry into activated lymphocytes depends on Zip6 and that this transporter is essential for the correct function of the cellular activation machinery.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Síndromes de Imunodeficiência/metabolismo , Proteínas de Neoplasias/metabolismo , Linfócitos T/imunologia , Timo/patologia , Zinco/metabolismo , Animais , Atrofia , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/imunologia , Proliferação de Células , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
2.
AIDS ; 31(3): 321-332, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677160

RESUMO

BACKGROUND: The development of a prophylactic vaccine against HIV-1 has so far not been successful. Therefore, attention has shifted more and more toward the development of novel therapeutic vaccines. Here, we evaluated a new mRNA-based therapeutic vaccine against HIV-1-encoding activation signals (TriMix: CD40L + CD70 + caTLR4) combined with rationally selected antigenic sequences [HIVACAT T-cell immunogen (HTI)] sequence: comprises 16 joined fragments from Gag, Pol, Vif, and Nef). METHODS: For this purpose, peripheral blood mononuclear cells from HIV-1-infected individuals on cART, lymph node explants from noninfected humans, and splenocytes from immunized mice were collected and several immune functions were measured. RESULTS: Electroporation of immature monocyte-derived dendritic cells from HIV-infected patients with mRNA encoding HTI + TriMix potently activated dendritic cells which resulted in upregulation of maturation markers and cytokine production and T-cell stimulation, as evidenced by enhanced proliferation and cytokine secretion (IFN-γ). Responses were HIV specific and were predominantly targeted against the sequences included in HTI. These findings were confirmed in human lymph node explants exposed to HTI + TriMix mRNA. Intranodal immunizations with HTI mRNA in a mouse model increased antigen-specific cytotoxic T-lymphocyte responses. The addition of TriMix further enhanced cytotoxic responses. CONCLUSION: Our results suggest that uptake of mRNA, encoding strong activation signals and a potent HIV antigen, confers a T-cell stimulatory capacity to dendritic cells and enhances their ability to stimulate antigen-specific immunity. These findings may pave the way for therapeutic HIV vaccine strategies based on antigen-encoding RNA to specifically target antigen-presenting cells.


Assuntos
Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/administração & dosagem , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , RNA Mensageiro/genética , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Adjuvantes Imunológicos/genética , Animais , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Antígenos HIV/genética , Humanos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA