Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 2): 150653, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597569

RESUMO

The influence of ionic strength up to 3 mol kg-1 (background electrolytes NaCl or CaCl2) on U(VI) sorption onto montmorillonite was investigated as function of pHc in absence and presence of CO2. A multi-method approach combined batch sorption experiments with spectroscopic methods (time-resolved laser-induced fluorescence spectroscopy (TRLFS) and in situ attenuated total reflection Fourier-transform infrared spectroscopy (ATR FT-IR)). In the absence of atmospheric carbonate, U(VI) sorption was nearly 99% above pHc 6 in both NaCl and CaCl2 and no significant effect of ionic strength was found. At lower pH, cation exchange was strongly reduced with increasing ionic strength. In the presence of carbonate, U(VI) sorption was reduced above pHc 7.5 in NaCl and pHc 6 in CaCl2 system due to formation of aqueous UO2(CO3)x(2-2x) and Ca2UO2(CO3)3 complexes, respectively, as verified by TRLFS. A significant ionic strength effect was observed due to the formation of Ca2UO2(CO3)3(aq), which strongly decreases U(VI) sorption with increasing ionic strength. The joint analysis of determined sorption data together with literature data (giving a total of 213 experimental data points) allowed to derive a consistent set of surface complexation reactions and constants based on the 2SPNE SC/CE approach, yielding log K°≡SSOUO2+ = 2.42 ± 0.04, log K°≡SSOUO2OH = -4.49 ± 0.7, and log K°≡SSOUO2(OH)32- = -20.5 ± 0.4. Ternary uranyl carbonate surface complexes were not required to describe the data. With this reduced set of surface complexes, an improved robust sorption model was obtained covering a broad variety of geochemical settings over wide ranges of ionic strengths and groundwater compositions, which subsequently was validated by an independent original dataset. This model improves the understanding of U(VI) retention by clay minerals and enables now predictive modeling of U(VI) sorption processes in complex clay rich natural environments.


Assuntos
Bentonita , Urânio , Adsorção , Carbonatos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/análise
2.
Chemosphere ; 187: 277-285, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28854382

RESUMO

One natural retardation process to be considered in risk assessment for contaminants in the environment is sorption on mineral surfaces. A realistic geochemical modeling is of high relevance in many application areas such as groundwater protection, environmental remediation, or disposal of hazardous waste. Most often concepts with constant distribution coefficients (Kd-values) are applied in geochemical modeling with the advantage to be simple and computationally fast, but not reflecting changes in geochemical conditions. In this paper, we describe an innovative and efficient method, where the smart Kd-concept, a mechanistic approach mainly based on surface complexation modeling, is used (and modified for complex geochemical models) to calculate and apply realistic distribution coefficients. Using the geochemical speciation code PHREEQC, multidimensional smart Kd-matrices are computed as a function of varying (or uncertain) environmental conditions. On the one hand, sensitivity and uncertainty statements for the distribution coefficients can be derived. On the other hand, smart Kd-matrices can be used in reactive transport (or migration) codes (not shown here). This strategy has various benefits: (1) rapid computation of Kd-values for large numbers of environmental parameter combinations; (2) variable geochemistry is taken into account more realistically; (3) efficiency in computing time is ensured, and (4) uncertainty and sensitivity analysis are accessible. Results are presented exemplarily for the sorption of uranium(VI) onto a natural sandy aquifer material and are compared to results based on the conventional Kd-concept. In general, the sorption behavior of U(VI) in dependence of changing geochemical conditions is described quite well.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/normas , Poluição Ambiental/estatística & dados numéricos , Água Subterrânea/química , Modelos Químicos , Adsorção , Incerteza , Urânio/análise
3.
Dalton Trans ; 44(22): 10508-15, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25986391

RESUMO

The aqueous speciation of selenium(iv) was elucidated by a combined approach applying quantum chemical calculations, infrared (IR), Raman, and (77)Se NMR spectroscopy. The dimerization of hydrogen selenite (HSeO3(-)) was confirmed at concentrations above 10 mmol L(-1) by both IR and NMR spectroscopy. Quantum chemical calculations provided the assignment of vibrational bands observed to specific molecular modes of the (HSeO3)2(2-) ion. The results presented will provide a better understanding of the chemistry of aqueous Se(iv) which is of particular interest for processes occurring at mineral/water interfaces.


Assuntos
Selênio/química , Dimerização , Espectroscopia de Ressonância Magnética , Soluções , Espectrofotometria Infravermelho , Análise Espectral Raman
4.
Sci Total Environ ; 409(16): 3059-65, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21665018

RESUMO

The uranium mine in Königstein (Germany) is currently in the process of being flooded. Huge mass of Ferrovum myxofaciens dominated biofilms are growing in the acid mine drainage (AMD) water as macroscopic streamers and as stalactite-like snottites hanging from the ceiling of the galleries. Microsensor measurements were performed in the AMD water as well as in the biofilms from the drainage channel on-site and in the laboratory. The analytical data of the AMD water was used for the thermodynamic calculation of the predominance fields of the aquatic uranium sulfate (UO(2)SO(4)) and UO(2)(++) speciation as well as of the solid uranium species Uranophane [Ca(UO(2))(2)(SiO(3)OH)(2)∙5H(2)O] and Coffinite [U(SiO(4))(1-x)(OH)(4x)], which are defined in the stability field of pH>4.8 and Eh<960 mV and pH>0 and Eh<300 mV, respectively. The plotting of the measured redox potential and pH of the AMD water and the biofilm into the calculated pH-Eh diagram showed that an aqueous uranium(VI) sulfate complex exists under the ambient conditions. According to thermodynamic calculations a retention of uranium from the AMD water by forming solid uranium(VI) or uranium(IV) species will be inhibited until the pH will increase to >4.8. Even analysis by Energy-filtered Transmission Electron Microscopy (EF-TEM) and electron energy loss spectroscopy (EELS) within the biofilms did not provide any microscopic or spectroscopic evidence for the presence of uranium immobilization. In laboratory experiments the first phase of the flooding process was simulated by increasing the pH of the AMD water. The results of the experiments indicated that the F. myxofaciens dominated biofilms may have a substantial impact on the migration of uranium. The AMD water remained acid although it was permanently neutralized with the consequence that the retention of uranium from the aqueous solution by the formation of solid uranium species will be inhibited.


Assuntos
Biofilmes/crescimento & desenvolvimento , Urânio/análise , Poluentes Químicos da Água/análise , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/metabolismo , Monitoramento Ambiental , Mineração , Modelos Químicos , Termodinâmica , Urânio/química , Urânio/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA