RESUMO
A nutrition-based approach was utilized to examine the effects of fish oil and a polyphenol blend (with or without tomato pomace) on the fecal microbiota and plasma/fecal metabolomes. Forty dogs, aged 5-14 years, were fed a washout food, then randomized to consume a control (fish oil and polyphenol blend without tomato pomace) or test (fish oil and polyphenol blend with tomato pomace) food, then the washout food, and crossed over to consume the test or control food; each for 30 days. Several metabolites differed when comparing consumption of the washout with either the control or test foods, but few changed significantly between the test and control foods. Plasma levels of 4-ethylphenyl sulfate (4-EPS), a metabolite associated with anxiety disorders, demonstrated the largest decrease between the washout food and the control/test foods. Plasma 4-EPS levels were also significantly lower after dogs ate the test food compared with the control food. Other plasma metabolites linked with anxiety disorders were decreased following consumption of the control/test foods. Significant increases in Blautia, Parabacteroides, and Odoribacter in the fecal microbiota correlated with decreases in 4-EPS when dogs ate the control/test foods. These data indicate that foods supplemented with polyphenols and omega-3 fatty acids can modulate the gut microbiota to improve the profile of anxiety-linked metabolites.
RESUMO
Increased concentrations of dietary fish oil and antioxidants have been shown previously to change circulating concentrations of individual fatty acids (FAs) and vitamin E. The purpose of this study was to further investigate the effects of vitamins E and C, in combination with dietary fish oil, on selected blood and urinary biomarkers. Fifty adult Beagle dogs (mean age 5.3 years, range 1.4-14.2 years) were randomized into five dietary treatment groups for 90 days. All foods were complete and balanced and met the nutrient profiles of AAFCO for adult dogs. For 60 days before study initiation, dogs consumed a pretrial food that contained 74 IU/kg vitaminE and 0mg/kg vitaminC. The five experimental foods were confirmed by analytical methods to contain ≥ 640 IU/kg vitaminE and 130 mg/kg vitaminC (as fed). Experimental foods ranged from low levels of EPA and DHA (pretrial food and lowest experimental food had 0.01% EPA and no detectable DHA) to the highest experimental food with 0.25% EPA and 0.17% DHA. Serum was analyzed for FAs, vitamin E, and cholesterol concentrations; urine was analyzed for 11-dehydro thromboxane B(2) (TXB(2)). Serum was also used for metabolomic analysis. FA intake ranged from 0.02 g/day EPA and 0.02 g/day DHA to 0.58 g/day EPA and 0.39 g/day DHA. Increasing dietary concentrations of EPA and DHA resulted in increased serum concentrations of EPA and DHA in a dose-dependent fashion. Greater dietary vitamin E intake resulted in increased serum vitamin E concentrations (P<0.01). Higher serum cholesterol was also associated with higher serum vitamin E concentrations (P<0.01). In turn, changes in serum cholesterol concentration were associated with diet-induced changes in serum FA concentrations (all P<0.01). At the beginning of the dietary treatment period the most significant predictor of urine 11-dehydro TXB(2) concentration was age, followed by lean-body mass. After dietary treatment with different amounts of fish oil, age (increases 11-dehydro TXB(2)) was followed by EPA concentration as a significant negative predictor of urine 11-dehydro TXB(2) concentration (increasing serum concentrations of EPA decrease 11-dehydro TXB(2)), and then lean-body mass (decreases 11-dehydro TXB(2)). Serum docosahexaenoyl-glycerophosphocholine concentration was increased by feeding fish oil in a dose-response manner. In summary, serum vitamin E concentration is enhanced primarily by feeding vitamin E and secondarily by serum cholesterol concentration. When feeding diets enriched with fish oil, the major negative predictor of urinary 11-dehydro TXB(2) concentration is serum EPA concentration. Plasma lysophospholipids can be dynamically regulated by dietary fish oil supplementation.
Assuntos
Cães/metabolismo , Óleos de Peixe/farmacologia , Lisofosfolipídeos/sangue , Tromboxano B2/análogos & derivados , Animais , Ácido Ascórbico/farmacologia , Biomarcadores/sangue , Biomarcadores/urina , Colesterol/sangue , Dieta/veterinária , Cães/sangue , Cães/urina , Ácidos Graxos/sangue , Feminino , Masculino , Metabolômica , Tromboxano B2/urina , Vitamina E/sangue , Vitamina E/farmacologiaRESUMO
Electroconvulsive therapy (ECT) remains the treatment of choice for drug-resistant patients with depressive disorders, yet the mechanism for its efficacy remains unknown. Gene transcription changes were measured in the frontal cortex and hippocampus of rats subjected to sham seizures or to 1 or 10 electroconvulsive seizures (ECS), a model of ECT. Among the 3500-4400 RNA sequences detected in each sample, ECS increased by 1.5- to 11-fold or decreased by at least 34% the expression of 120 unique genes. The hippocampus produced more than three times the number of gene changes seen in the cortex, and many hippocampal gene changes persisted with chronic ECS, unlike in the cortex. Among the 120 genes, 77 have not been reported in previous studies of ECS or seizure responses, and 39 were confirmed among 59 studied by quantitative real time PCR. Another 19 genes, 10 previously unreported, changed by <1.5-fold but with very high significance. Multiple genes were identified within distinct pathways, including the BDNF-MAP kinase-cAMP-cAMP response element-binding protein pathway (15 genes), the arachidonic acid pathway (5 genes), and more than 10 genes in each of the immediate-early gene, neurogenesis, and exercise response gene groups. Neurogenesis, neurite outgrowth, and neuronal plasticity associated with BDNF, glutamate, and cAMP-protein kinase A signaling pathways may mediate the antidepressant effects of ECT in humans. These genes, and others that increase only with chronic ECS such as neuropeptide Y and thyrotropin-releasing hormone, may provide novel ways to select drugs for the treatment of depression and mimic the rapid effectiveness of ECT.