Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(5): 5319-5331, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663832

RESUMO

Eight lactating cows were fed 4 diets in which dietary crude protein (CP) was increased in steps of approximately 2 percentage units from 11 to 17% of DM by replacing high-moisture corn with soybean meal supplemented with rumen-protected Met to maintain a Lys:Met ratio of 3:1 in metabolizable protein. Trial design was a replicated 4 × 4 Latin square; experimental periods lasted 28 d, with data and sample collection being performed during wk 3 and 4 of each period. Digesta samples were collected from the rumen as well as the omasum to measure metabolite concentrations and ruminal outflow of N fractions using infusion of 15N-enriched ammonia to quantify microbial nonammonia N (NAN) and nonmicrobial NAN. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.). There were linear increases in the yields of milk and true protein and concentration of milk urea N, and a linear decrease in N efficiency, with increasing dietary CP. Apparent ruminal and total-tract N digestibility increased linearly with increasing dietary CP, but estimated true total-tract N digestibility was not affected. Apparent digestibility of the other macronutrients was not influenced by diet. Ruminal ammonia, total AA and peptides, and branched-chain VFA also increased linearly with dietary CP. The 15N enrichment of liquid- and particle-associated microbes linearly declined with increasing dietary CP due to decreasing 15N enrichment of the ammonia pool. Although no effect of dietary CP on nonmicrobial NAN flow was detected, total NAN flow increased linearly from 525 g/d at 11% CP to 637 g/d at 17% CP due to the linear increase in microbial NAN flow from 406 g/d at 11% CP to 482 g/d at 17% CP. Under the conditions of this study, when dietary CP was increased by adding soybean meal supplemented with rumen-protected Met, improved milk and protein yields were driven not by RUP supply but by increased ruminal outflow of microbial protein.


Assuntos
Lisina , Omaso , Animais , Bovinos , Dieta/veterinária , Proteínas Alimentares , Digestão , Feminino , Lactação , Metionina , Leite , Nitrogênio , Rúmen
2.
J Dairy Sci ; 103(2): 1463-1471, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837796

RESUMO

Previous research has demonstrated that feeding canola meal (CM) improves milk production and N utilization by lactating dairy cows when replacing solvent-extracted soybean meal (SBM). The objective of the present study was to evaluate whether CM would improve milk yield and components and N utilization, compared with SBM, at different ratios of alfalfa silage (AS) to corn silage (CS) fed to lactating dairy cows. Twenty-four multiparous Holstein cows averaging, at the beginning of the study (mean ± SD), 2.8 ± 0.9 parity, 684 ± 56 kg of BW, 102 ± 41 DIM, and 49 ± 4 kg milk/d, and 24 primiparous cows averaging (mean ± SD) 565 ± 46 kg of BW, 123 ± 30 DIM, and 40 ± 4 kg milk/d were blocked by parity and DIM. A cyclic changeover design with 4 replications of 2 blocks of treatments of 6 cows was used in an arrangement with 4 28-d periods. Dietary treatments were arranged in a 3 × 2 factorial design of 3 proportions of AS to CS as forage source (HAS = high AS, 50% AS to 10% CS; MAS = medium AS, 30% AS to 30% CS; LAS = low AS, 10% AS to 50% CS) and 2 protein supplements (CM vs. SBM). Diets were formulated to contain [dry matter (DM) basis]: 60% forage, 8 to 15% high-moisture corn, 2 to 5% soy hulls, 1.3% mineral-vitamin premix, 16% crude protein, and 31 to 33% NDF. Data from the last 2 weeks of each period were used to compute mean milk yield and composition, and efficiencies of feed conversion, for each cow in each period. Data for the other variables were collected during the last week of each period. All data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Regardless of the forage source, replacing SBM with CM improved yields of milk, milk protein, and solids-not-fat. Moreover, milk urea nitrogen concentration and urinary excretion of total N (g/d) and urea N (% of total urinary N) decreased when CM replaced SBM. An interaction effect occurred between forage source and protein supplements for apparent total-tract digestibility, and, overall, this effect was due to small differences in ingredient and chemical compositions of the diets. In addition, these differences had a minor effect on cow performance. Yields of milk and milk components were greatest for cows fed 50% CS, intermediate for 30% CS, and lowest for 10% CS, indicating that, under the conditions of the present study, cows fed 50% CS in the diet (DM basis) had greater production compared with those fed 50% AS.


Assuntos
Brassica napus , Bovinos/fisiologia , Proteínas Alimentares/análise , Suplementos Nutricionais/análise , Leite/metabolismo , Silagem/análise , Animais , Dieta/veterinária , Feminino , Lactação , Medicago sativa , Leite/química , Proteínas do Leite/metabolismo , Nitrogênio/análise , Paridade , Gravidez , Glycine max , Ureia/análise , Zea mays
3.
J Dairy Sci ; 101(3): 2084-2095, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29290449

RESUMO

Corn silage, an important forage fed to dairy cows in the United States, is energy rich but protein poor. The objectives of this experiment were to investigate the effects on production of milk and milk components of feeding corn silage-based diets with 4 levels of dietary crude protein (CP) plus rumen-protected methionine (RPM). Thirty-six cows were blocked by days in milk into 9 squares and randomly assigned to 9 balanced 4 × 4 Latin squares with four 4-wk periods. All diets were formulated to contain, as a percent of dry matter (DM), 50% corn silage, 10% alfalfa silage, 4% soyhulls, 2.4% mineral-vitamin supplement, and 30% neutral detergent fiber. Supplemental RPM (Mepron, Evonik Corp., Kennesaw, GA) was added to all diets to maintain a Lys:Met ratio of 3.1 in digested AA. Ground high-moisture corn was reduced and soybean meal (SBM) plus RPM increased to give diets containing, on average, 11% CP (28% corn, 31% starch, 6% SBM, 4 g of RPM/d), 13% CP (23% corn, 29% starch, 10% SBM, 8 g of RPM/d), 15% CP (19% corn, 26% starch, 15% SBM, 10 g of RPM/d), and 17% CP (14% corn, 24% starch, 19% SBM, 12 g of RPM/d). Data from the last 14 d of each period were analyzed using the mixed procedures in SAS (SAS Institute Inc., Cary, NC). With the exception of milk fat and milk lactose content, we found no significant effects of diet on all production traits. We did note linear responses to dietary CP concentration for intake, production of milk and milk components, and MUN. Cows fed the 11% CP diet had reduced DM intake, lost weight, and yielded less milk and milk components. Mean separation indicated that only true protein yield was lower on 13% CP than on 17% dietary CP, but not different between 15 and 17% CP. This indicated no improvement in production of milk and milk components above 15% CP. Quadratic trends for yield of milk, energy-corrected milk, and true protein suggested that a dietary CP concentration greater than 15% may be necessary to maximize production or, alternately, that a plateau was reached and no further CP was required. Although diet influenced apparent digestibility of DM, organic matter, and neutral detergent fiber, digestibility did not increase linearly with dietary CP. However, we observed linear and quadratic effects of dietary CP on acid detergent fiber digestibility. As expected, we found a linear effect of dietary CP on apparent N digestibility and on fecal and urinary N excretion, but no effect of diet on estimated true N digestibility. Ruminal concentrations of ammonia, total AA, peptides, and branched-chain volatile fatty acids also increased linearly with dietary CP. Quadratic responses indicated that 14.0 to 14.8% CP was necessary to optimize digestion and energy utilization. Overall results indicated that, when RPM was added to increase Lys:Met to 3.1, 15% CP was adequate for lactating dairy cows fed corn silage diets supplemented with SBM and secreting about 40 kg of milk/d; N excretion was lower than at 17% CP but with no reduction in yield of milk and milk components.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Proteínas Alimentares/metabolismo , Glycine max/química , Lactação/efeitos dos fármacos , Metionina/metabolismo , Zea mays/química , Animais , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Feminino , Metionina/administração & dosagem , Leite/química , Leite/metabolismo , Distribuição Aleatória , Rúmen/fisiologia , Silagem/análise
4.
J Dairy Sci ; 101(1): 328-339, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29129322

RESUMO

Extrusion treated canola meal (TCM) was produced in an attempt to increase the rumen-undegraded protein fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, omasal nutrient flow, and performance in lactating dairy cows. To assess performance, 30 multiparous Holstein cows averaging (mean ± SD) 119 ± 23 d in milk and 44 ± 7 kg of milk/d and 15 primiparous cows averaging 121 ± 19 d in milk and 34 ± 6 kg of milk/d were blocked in a randomized complete block design with a 2-wk covariate period and 12-wk experimental period (experiment 1). Dietary ingredients differed only in protein supplements, which were SBM, CM, or TCM. All diets were formulated to contain (dry matter basis) 30% alfalfa silage, 30% corn silage, 4% soy hulls, 2.4% mineral-vitamin premix, and 16% CP. The SBM diet contained 25% high-moisture shelled corn and 8.6% SBM; the canola diets contained 22% high-moisture shelled corn and either 11.2% CM or 11.4% TCM. To assess ruminal digestion and omasal nutrient flow, 6 rumen-cannulated cows were blocked into 2 squares of 3 cows and randomly assigned within blocks to the same 3 dietary treatments as in experiment 1 in a replicated 3 × 3 Latin square design (experiment 2). Data were analyzed using the MIXED procedure of SAS (SAS Institute, Cary, NC). Orthogonal contrasts were used to compare effects of different protein supplements: SBM versus CM + TCM and CM versus TCM. In experiment 1, compared with SBM, apparent total-tract digestibilities of dry matter and nutrients were greater in cows fed both CM diets, and there was a tendency for nutrient digestibilities to be higher in cows fed CM compared with TCM. Diets did not affect milk yield and milk components; however, both canola diets decreased urinary urea N (% of total urinary N), fecal N (% of total N intake), and milk urea N concentration. In experiment 2, compared with SBM, both canola diets increased N intake and tended to increase rumen-degraded protein supply (kg/d) and N truly digested in the rumen (kg/d). Diets did not affect ruminal digestibility, efficiency of microbial protein synthesis, and rumen-undegraded protein flow among diets. Results from this experiment indicate that replacing SBM with CM or TCM in diets of lactating cows improved digestibility and may reduce environmental impact. Moreover, under the conditions of the present study, treating CM by extrusion did not improve CM utilization.


Assuntos
Ração Animal/análise , Brassicaceae , Bovinos/fisiologia , Dieta/veterinária , Glycine max/química , Rúmen/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Nitrogênio da Ureia Sanguínea , Proteínas Alimentares/administração & dosagem , Digestão , Feminino , Lactação , Leite/metabolismo , Omaso/metabolismo , Ureia/metabolismo
5.
J Dairy Sci ; 97(8): 5088-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24931520

RESUMO

The objectives of this study were to evaluate the feeding of coconut oil (CO), in which lauric acid (La) comprises about 50% of the fatty acid composition, as a practical rumen protozoa (RP) suppressing agent, to assess whether the source of La affects ruminal fermentation and animal performance and to test whether suppressing RP improves N utilization, nutrient digestion, nutrient flow at the omasal canal, and milk production. Fifteen multiparous Holstein cows (3 fitted with ruminal cannulas) and 15 primiparous Holstein cows (3 fitted with ruminal cannulas) were used in a replicated 3×3 Latin square experiment with 14d of adaptation and 14d of sample collection. Diets were fed as total mixed ration and contained (dry matter basis) 10% corn silage, 50% alfalfa silage, and 40% concentrate. The control diet contained 3% (dry matter basis) calcium soaps of palm oil fatty acids (Megalac, Church & Dwight Co. Inc., Princeton, NJ) as a ruminally inert fat source and had no added La or CO. Diets with La and CO were formulated to contain equal amounts of La (1.3%, dry matter basis). Dry matter intake was not affected by treatment. Both CO and La reduced RP numbers by about 40%. Lauric acid reduced yield of milk and milk components; however, CO did not affect yield of milk and yields of milk components. Both La and CO caused small reductions in total VFA concentration; CO increased molar proportion of ruminal propionate, reduced ruminal ammonia and branched-chain volatile fatty acids, suggesting reduced protein degradation, and reduced milk urea N and blood urea N concentrations, suggesting improved protein efficiency. Lauric acid reduced total-tract apparent digestibility of neutral detergent fiber and acid detergent fiber as well as ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber as measured at the omasal canal; however, CO did not alter fiber digestion. Microbial protein flow at the omasal canal, as well as the flow of N fractions at the omasal canal, did not differ among treatments. Results from this experiment have confirmed that dietary La is not a practical agent for suppressing RP population in dairy cows, mainly because of its negative effects on fiber digestion and ruminal fermentation. Intake of CO appeared to reduce ruminal and improve protein efficiency, but did not improve milk production, milk composition, or increase microbial outflow from the rumen. Based on the results of this study, a 40% reduction of RP population is not sufficient to improve N utilization in dairy cows.


Assuntos
Dieta/veterinária , Fermentação , Ácidos Láuricos/administração & dosagem , Leite/metabolismo , Óleos de Plantas/administração & dosagem , Rúmen/parasitologia , Amônia/metabolismo , Animais , Bovinos , Óleo de Coco , Fibras na Dieta/administração & dosagem , Digestão , Ácidos Graxos/metabolismo , Feminino , Lactação , Medicago sativa , Leite/química , Omaso/metabolismo , Óleo de Palmeira , Rúmen/metabolismo , Silagem , Zea mays
6.
J Dairy Sci ; 94(4): 1978-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21426989

RESUMO

Objectives of this study were to quantify production responses of lactating dairy cows to supplying absorbable Met as isopropyl-2-hydroxy-4-(methylthio)-butanoic acid (HMBi), or rumen-protected Met (RPM, Smartamine M; Adisseo, Alpharetta, GA) fed with or without 2-hydroxy-4-(methylthio)-butanoic acid (HMB), and to determine whether Met supplementation will allow the feeding of reduced dietary crude protein (CP). Seventy cows were blocked by parity and days in milk into 14 blocks and randomly assigned within blocks to 1 of the 5 dietary treatments based on alfalfa and corn silages plus high-moisture corn: 1 diet with 15.6% CP and no Met source (negative control); 3 diets with 15.6% CP plus 0.17% HMBi, 0.06% RPM + 0.10% HMB, or 0.06% RPM alone; and 1 diet with 16.8% CP and no Met supplement (positive control). Assuming that 50% of ingested HMBi was absorbed from the gastrointestinal tract and 80% of the Met in RPM was absorbed at intestine, the HMBi and RPM supplements increased metabolizable Met supply by 9 g/d and improved the Lys:Met ratio from 3.6 to 3.0. After a 2-wk covariate period during which all cows received the same diet, cows were fed test diets continuously for 12 wk. Diet did not affect dry matter intake (mean ± SD, 25.0±0.3 kg/d), body weight gain (0.59±0.2 kg/d), or milk yield (41.7±0.6 kg/d). However, feeding HMBi increased yield of energy-corrected milk and milk content of protein and solids-not-fat. Moreover, trends were observed for increased milk fat content and yield of fat and true protein on all 3 diets containing supplemental Met. Apparent N efficiency (milk N/N intake) was highest on the RPM treatment. Feeding 16.8% CP without a Met source elevated milk urea N and urinary excretion of urea N and total N and reduced apparent N efficiency from 34.5 to 30.2%, without improving production. Overall results suggested that feeding HMBi or RPM would give similar improvements in milk production and N utilization.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Lactação/fisiologia , Metionina/administração & dosagem , Leite/metabolismo , Nitrogênio/metabolismo , Rúmen/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Butiratos/administração & dosagem , Butiratos/metabolismo , Bovinos/metabolismo , Suplementos Nutricionais , Feminino , Metionina/metabolismo
7.
J Dairy Sci ; 92(6): 2719-28, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448006

RESUMO

An incomplete 8 x 8 Latin square trial (4-wk periods; 12 wk total) using 32 multiparous and 16 primiparous Holstein cows was conducted to assess the production response to crude protein (CP), digestible rumen-undegraded protein (RUP), and rumen-protected Met (RPM; fed as Mepron; Degussa Corp., Kennesaw, GA). Diets contained [dry matter (DM) basis] 21% alfalfa silage, 34% corn silage, 22 to 26% high-moisture corn, 10 to 14% soybean meal, 4% soyhulls, 2% added fat, 1.3% minerals and vitamins, and 27 to 28% neutral detergent fiber. Treatments were a 2 x 2 x 2 factorial arrangement of the following main effects: 15.8 or 17.1% dietary CP, with or without supplemental rumen-undegraded protein (RUP) from expeller soybean meal, and 0 or 9 g of RPM/d. None of the 2- or 3-way interactions was significant. Higher dietary CP increased DM intake 1.1 kg/d and yield of milk 1.7 kg/d, 3.5% fat-corrected milk (FCM) 2.2 kg/d, fat 0.10 kg/d, and true protein 0.05 kg/d, and improved apparent N balance and DM and fiber digestibility. However, milk urea N and estimated urinary excretion of urea-N and total-N also increased, and apparent N efficiency (milk-N/N-intake) fell from 33 to 30% when cows consumed higher dietary CP. Positive effects of feeding more RUP were increased feed efficiency and milk fat content plus 1.8 kg/d greater FCM and 0.08 kg/d greater fat, but milk protein content was lower and milk urea N and urinary urea excretion were elevated. Supplementation with RPM increased DM intake 0.7 kg/d and FCM and fat yield by 1.4 and 0.06 kg/d, and tended to increase milk fat content and yield of milk and protein.


Assuntos
Indústria de Laticínios , Dieta/veterinária , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Digestão/fisiologia , Lactação/fisiologia , Metionina/administração & dosagem , Animais , Bovinos , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/análise , Feminino , Análise dos Mínimos Quadrados , Gravidez , Distribuição Aleatória , Rúmen/metabolismo
8.
J Dairy Sci ; 92(3): 1281-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19233821

RESUMO

The objective of this study was to determine whether production and nutrient utilization differed when lactating cows were fed diets based on 1 of 3 sources of alfalfa silage (AS) and whether performance was altered by feeding rumen-protected Met (RPM; fed as Mepron). Thirty-six lactating Holstein cows were blocked by parity and days in milk, then assigned to a randomized complete block design and fed a 3 x 2 arrangement of diets formulated from alfalfa ensiled in bag, bunker, or oxygen-limited silos, and supplemented with either 0 or 8 g of RPM/d. After feeding a covariate diet for 3 wk, treatment diets were fed for the remaining 12 wk of the trial. Experimental diets averaged [dry matter (DM) basis] 41% AS, 24% corn silage, 24% high-moisture corn, 3.7% soybean meal, 4% roasted soybeans, 2% ground shelled corn, 1.0% minerals and vitamins, 16.7% CP, and 31% NDF. Alfalfa from the oxygen-limited silo was lower in ash, higher in lactate, nonfiber carbohydrate, and in vitro NDF digestibility, had lower pH and ammonia content, and gave rise to greater DM intake and ADF digestibility than silage from the other 2 silos, indicating a more effective fermentation that, in turn, resulted in greater nutrient preservation. However, the more favorable composition, intake, and digestibility of alfalfa from the oxygen-limited silo were not reflected in improved milk production, which was not different among alfalfa sources. There was increased apparent N efficiency and trends for improved feed efficiency and protein yield with RPM supplementation across all 3 silages. The National Research Council (2001) model predicted that feeding RPM reduced Lys:Met ratio from 3.5 to 2.9, indicating that the diets were limiting in Met.


Assuntos
Indústria de Laticínios/instrumentação , Lactação/efeitos dos fármacos , Medicago sativa/química , Metionina/farmacologia , Rúmen , Silagem/análise , Aminoácidos/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Manipulação de Alimentos/instrumentação , Leite/química , Leite/metabolismo , Proteínas do Leite/análise , Distribuição Aleatória
9.
J Dairy Sci ; 91(12): 4801-10, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19038955

RESUMO

Replacing dietary starch with sugar has been reported to improve production in dairy cows. Two sets of 24 Holstein cows averaging 41 kg/d of milk were fed a covariate diet, blocked by days in milk, and randomly assigned in 2 phases to 4 groups of 6 cows each. Cows were fed experimental diets containing [dry matter (DM) basis]: 39% alfalfa silage, 21% corn silage, 21% rolled high-moisture shelled corn, 9% soybean meal, 2% fat, 1% vitamin-mineral supplement, 7.5% supplemental nonstructural carbohydrate, 16.7% crude protein, and 30% neutral detergent fiber. Nonstructural carbohydrates added to the 4 diets were 1) 7.5% corn starch, 0% sucrose; 2) 5.0% starch, 2.5% sucrose; 3) 2.5% starch, 5.0% sucrose; or 4) 0% starch, 7.5% sucrose. Cows were fed the experimental diets for 8 wk. There were linear increases in DM intake and milk fat content and yield, and linear decreases in ruminal concentrations of ammonia and branched-chain volatile fatty acids, and urinary excretion of urea-N and total N, and urinary urea-N as a proportion of total N, as sucrose replaced corn starch in the diet. Despite these changes, there was no effect of diet on microbial protein formation, estimated from total purine flow at the omasum or purine derivative excretion in the urine, and there were linear decreases in both milk/DM intake and milk N/N-intake when sucrose replaced dietary starch. However, expressing efficiency as fat-corrected milk/DM intake or solids-corrected milk/DM intake indicated that there was no effect of sucrose addition on nutrient utilization. Replacing dietary starch with sucrose increased fat secretion, apparently via increased energy supply because of greater intake. Positive responses normally correlated with improved ruminal N efficiency that were altered by sucrose feeding were not associated with increased protein secretion in this trial.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Carboidratos da Dieta/metabolismo , Lactação/fisiologia , Sacarose/metabolismo , Animais , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bovinos/metabolismo , Indústria de Laticínios , Digestão , Ingestão de Alimentos/fisiologia , Feminino , Conteúdo Gastrointestinal/química , Concentração de Íons de Hidrogênio , Distribuição Aleatória , Rúmen/metabolismo , Rúmen/microbiologia
10.
J Dairy Sci ; 91(3): 1092-102, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18292265

RESUMO

Two 4 x 4 Latin square trials (4-wk periods; 16 wk total) were conducted to see whether supplementing rumen-protected Met (RPM; fed as Mepron) would allow feeding less crude protein (CP), thereby reducing urinary N excretion, but without losing production. In trial 1, 24 Holsteins were fed 4 diets as total mixed rations containing [dry matter (DM) basis]: 18.6% CP and 0 g of RPM/d; 17.3% CP and 5 g of RPM/d; 16.1% CP and 10 g of RPM/d; or 14.8% CP and 15 g of RPM/d. Dietary CP was reduced by replacing soybean meal with high-moisture shelled corn. All diets contained 21% alfalfa silage, 28% corn silage, 4.5% roasted soybeans, 5.8% soyhulls, 0.6% sodium bicarbonate, 0.5% vitamins and minerals, and 27% neutral detergent fiber. There was no effect of diet on intake, weight gain, or yields of protein, lactose, and solids-not-fat. However, production was greater at 17.3% CP plus RPM and 16.1% CP plus RPM than on the other 2 diets. Apparent N efficiency (milk N:N intake) was greatest on the lowest CP diet containing the most RPM. Linear reductions in milk urea N and urinary N excretion were observed with lower dietary CP. In trial 2, 32 Holsteins were fed 4 diets as total mixed rations, formulated from ingredients used in trial 1 and containing 16.1 or 17.3% CP with 0 or 10 g of RPM/d. On average, cows were calculated to be in negative N balance on all diets because of lower than expected DM intake. There was no effect of RPM supplementation on any production trait. However, higher CP gave small increases in yields of milk, protein, and solids-not-fat and tended to increase DM intake and lactose yield. Apparent N efficiency was greater, and milk urea nitrogen was lower, on 16.1% CP. In trial 1, feeding lower CP diets supplemented with RPM resulted in improved N efficiency and reduced urinary N excretion. However, in trial 2, reducing dietary CP from 17.3 to 16.1% reduced milk secretion, an effect that was not reversed by RPM supplementation at low DM intakes when cows were apparently mobilizing body protein.


Assuntos
Bovinos/fisiologia , Lactação/efeitos dos fármacos , Metionina/administração & dosagem , Metionina/metabolismo , Nitrogênio/urina , Rúmen/metabolismo , Animais , Dieta , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Ingestão de Energia , Fezes/química , Feminino , Medicago sativa , Leite/química , Nitrogênio/análise , Paridade , Gravidez , Silagem , Glycine max , Zea mays
11.
J Dairy Sci ; 90(4): 1816-27, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369223

RESUMO

Sixteen (8 ruminally cannulated) multiparous and 8 primiparous lactating Holstein cows were used in 6 replicated 4 x 4 Latin squares to test the effects of feeding supplemental protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on milk production, nutrient utilization, and ruminal metabolism. All diets contained (% of DM) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. Intake and production were substantially reduced, and milk urea, blood urea, and ruminal ammonia were increased on urea vs. the diets supplemented with true protein. Although intake was lower in cows fed SSBM compared with CM, no differences were observed for milk yield among SSBM, CSM, and CM. Yields of fat and protein both were lower on CSM than on CM, whereas SSBM was intermediate. Milk urea and milk protein contents also decreased when CSM replaced SSBM or CM. Diet did not affect ruminal volatile fatty acids except that isobutyrate concentration was lowest on urea, intermediate on CSM, and greatest on SSBM and CM. Urinary excretion of urea N and total N was greatest on urea, intermediate on SSBM and CM, and lowest on CSM. Apparent N efficiency (milk N/N intake) was lower on the CSM diet than on the SSBM diet. Overall, production and N utilization were compromised when the diets of high-yielding dairy cows were supplemented with urea rather than true protein and the value of the true proteins.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Lactação/fisiologia , Ração Animal/análise , Animais , Indústria de Laticínios , Dieta/veterinária , Digestão/fisiologia , Feminino , Concentração de Íons de Hidrogênio , Distribuição Aleatória , Rúmen/química , Rúmen/metabolismo , Fatores de Tempo , Ureia/administração & dosagem
12.
J Dairy Sci ; 90(4): 1828-41, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369224

RESUMO

Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were used in 2 replicated 4 x 4 Latin squares to quantify effects of supplementing protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on omasal nutrient flows and microbial protein synthesis. All diets contained (% of dry matter) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. The CSM diet supplied the least rumen-degraded protein and the most rumen-undegraded protein. Microbial nonammonia N flow was similar among the true protein supplements but was 14% lower in cows fed urea. In vivo ruminal passage rate, degradation rate, and estimated escape for the 3 true proteins were, respectively, 0.044/h, 0.105/h, and 29% for SSBM; 0.051/h, 0.050/h, and 51% for CSM; and 0.039/h, 0.081/h, and 34% for CM. This indicated that CSM protein was less degraded because of both a faster passage rate and slower degradation rate. Omasal flow of individual AA, branched-chain AA, essential AA, nonessential AA, and total AA all were lower in cows fed urea compared with one of the true protein supplements. Among the 3 diets supplemented with true protein, omasal flow of Arg was greatest on CSM, and omasal flow of His was greatest on CSM, intermediate on CM, and lowest on SSBM. Lower flows of AA and microbial nonammonia N explained lower yields of milk yield and milk components observed on the urea diet in the companion lactation trial. These results clearly showed that supplementation with true protein was necessary to obtain sufficient microbial protein and rumen-undegraded protein to meet the metabolizable AA requirements of high-producing dairy cows.


Assuntos
Proteínas de Bactérias/biossíntese , Bovinos/fisiologia , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Omaso/metabolismo , Aminoácidos/metabolismo , Animais , Bactérias/química , Bactérias/metabolismo , Indústria de Laticínios , Ingestão de Alimentos , Eucariotos/química , Eucariotos/metabolismo , Feminino , Lactação/fisiologia , Modelos Biológicos , Nitrogênio/metabolismo , Omaso/microbiologia , Omaso/parasitologia , Distribuição Aleatória
13.
J Dairy Sci ; 90(4): 1887-903, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369230

RESUMO

Three ruminally and duodenally cannulated cows were assigned to an incomplete 4 x 4 Latin square with four 14-d periods and were fed diets supplemented with urea, solvent soybean meal, xylose-treated soybean meal (XSBM), or corn gluten meal to study the effects of crude protein source on omasal canal flows of soluble AA. Soluble AA in omasal digesta were fractionated by ultrafiltration into soluble proteins greater than 10 kDa (10K), oligopeptides between 3 and 10 kDa (3-10K), peptides smaller than 3 kDa (small peptides), and free AA (FAA). Omasal flow of total soluble AA ranged from 254 to 377 g/d and accounted for 9.2 to 15.9% of total AA flow. Averaged across diets, flows of AA in 10K, 3-10K, small peptides, and FAA were 29, 217, 50, and 5 g/d, respectively, and accounted for 10.3, 71.0, 17.5, and 1.6% of the total soluble AA flow. Cows with diets supplemented with solvent soybean meal had higher flows of Met, Val, and total AA associated with small peptides than those whose diets were supplemented with XSBM, whereas supplementation with corn gluten meal resulted in higher total small peptide-AA flows than did XSBM. Averaged across diets, 27, 75, and 93% of soluble AA in 10K, 3-10K, and peptides plus FAA flowing out of the rumen were of dietary origin. On average, 10% of the total AA flow from the rumen was soluble AA from dietary origin, indicating a substantial escape of dietary soluble N from ruminal degradation. Omasal concentrations and flows of soluble small peptides isolated by ultrafiltration were substantially smaller than most published ruminal small peptide concentrations and outflows measured in acid-deproteinized supernatants of digesta.


Assuntos
Bovinos/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Omaso/metabolismo , Rúmen/metabolismo , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Lactação/efeitos dos fármacos , Omaso/efeitos dos fármacos , Omaso/microbiologia , Peptídeos/metabolismo , Proteínas/metabolismo , Distribuição Aleatória , Rúmen/efeitos dos fármacos
14.
J Dairy Sci ; 90(3): 1378-91, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17297112

RESUMO

In trial 1, 15 Holsteins were fed 3 total mixed rations (TMR) with 33% neutral detergent fiber in 3 x 3 Latin squares (28-d periods). Two TMR contained (dry matter basis): 40% control alfalfa silage (CAS) or 40% ammonium tetraformate-treated alfalfa silage (TAS), 20% corn silage (CS), 33% high-moisture shelled corn (HMSC), 6% solvent soybean meal (SSBM), and 18% crude protein (CP); the third TMR contained 54% red clover silage (RCS), 6% dried molasses, 33% HMSC, 6% SSBM, and 16.3% CP. Silages differed in nonprotein N (NPN) and acid detergent insoluble N (ADIN; % of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS). Replacing CAS with TAS increased intake, yields of milk, fat-corrected milk, protein, and solids-not-fat, and apparent dry matter and N efficiency. Replacing CAS with RCS increased intake and N efficiency but not milk yield. Replacing CAS or TAS with RCS lowered milk urea N, increased apparent nutrient digestibility, and diverted N excretion from urine to feces. In trial 2, 24 Holsteins (8 ruminally cannulated) were fed 4 TMR in 4 x 4 Latin squares (28-d periods). Diets included the CAS, TAS, and RCS (RCS1) fed in trial 1 plus an immature RCS (RCS2; 29% NPN, 4% ADIN). The CAS, TAS, and RCS2 diets contained 36% HMSC and 3% SSBM and the RCS1 diet contained 31% HMSC and 9% SSBM. All TMR had 50% legume silage, 10% CS, 27% neutral detergent fiber, and 17 to 18% CP. Little difference was observed between cows fed CAS and TAS. Intakes of DM and yields of milk, fat-corrected milk, fat, protein, lactose, and solids-not-fat, and milk fat and protein content were greater on alfalfa silage vs. RCS. Blood urea N, milk urea N, ruminal ammonia, and total urinary N excretion were reduced on RCS, suggesting better N utilization on the lower NPN silage. Apparent N efficiency tended to be higher for cows fed RCS but there was no difference when N efficiency was expressed as kilograms of milk yield per kilogram of total N excreted.


Assuntos
Bovinos/metabolismo , Suplementos Nutricionais , Formiatos/administração & dosagem , Lactação/fisiologia , Medicago sativa/metabolismo , Silagem , Trifolium/metabolismo , Animais , Dieta/veterinária , Digestão/efeitos dos fármacos , Digestão/fisiologia , Fezes/química , Feminino , Concentração de Íons de Hidrogênio , Medicago sativa/química , Nitrogênio/análise , Distribuição Aleatória , Rúmen/química , Rúmen/metabolismo , Silagem/análise , Fatores de Tempo , Trifolium/química
15.
J Dairy Sci ; 90(3): 1392-404, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17297113

RESUMO

Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were blocked by days in milk and randomly assigned to replicated 4 x 4 Latin squares to quantify effects of nonprotein N (NPN) content of alfalfa silage (AS) and red clover silage (RCS) on omasal nutrient flows. Diets, fed as total mixed rations, contained 50% dry matter from control AS (CAS), ammonium tetraformate-treated AS (TAS), late maturity RCS (RCS1), or early maturity RCS (RCS2). Silages differed in NPN and acid detergent insoluble N (% of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS1); 29 and 4% (RCS2). The CAS, TAS, and RCS2 diets had 36% high-moisture shelled corn and 3% soybean meal, and the RCS1 diet had 31% high-moisture shelled corn and 9% soybean meal. All diets contained 10% corn silage, 27% neutral detergent fiber, and 17 to 18% crude protein. Compared with RCS, feeding AS increased the supply of rumen-degraded protein and omasal flows of nonammonia N and microbial protein, which may explain the improved milk yield observed in the companion lactation trial. However, omasal flow of rumen-undegraded protein was 34% greater on RCS. Except for Arg, omasal flows of individual AA, branched-chain AA, nonessential AA, essential AA, and total AA did not differ between cows fed AS vs. RCS. Within AS diets, no differences in omasal AA flows were observed. However, omasal flows of Asp, Ser, Glu, Cys, Val, Ile, Tyr, Lys, total nonessential AA, and total AA all were higher in cows fed RCS1 vs. cows fed RCS2. In this trial, there was no advantage to reducing NPN content of hay-crop silage.


Assuntos
Bovinos , Suplementos Nutricionais , Formiatos/administração & dosagem , Medicago sativa/metabolismo , Omaso , Trifolium/metabolismo , Aminoácidos/metabolismo , Amônia/análise , Amônia/metabolismo , Animais , Bactérias/metabolismo , Bovinos/metabolismo , Bovinos/microbiologia , Dieta/veterinária , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Eucariotos/metabolismo , Feminino , Formiatos/farmacologia , Expressão Gênica , Modelos Biológicos , Omaso/metabolismo , Omaso/microbiologia , Biossíntese de Proteínas/efeitos dos fármacos , Distribuição Aleatória , Rúmen/metabolismo , Rúmen/microbiologia , Silagem , Fatores de Tempo
16.
J Dairy Sci ; 88(11): 4045-64, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16230710

RESUMO

Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to 4 x 4 Latin squares and fed diets with different levels of rumen-degraded protein (RDP) to study the effect of RDP on production and N metabolism. Diets contained [dry matter (DM) basis] 37% corn silage, 13% alfalfa silage, and 50% concentrate. The concentrate contained solvent and lignosulfonate-treated soybean meal and urea, and was adjusted to provide RDP at: 13.2, 12.3, 11.7, and 10.6% of DM in diets A to D, respectively. Intake of DM and yield of milk, fat-corrected milk, and fat were not affected by treatments. Dietary RDP had positive linear effects on milk true protein content and microbial non-ammonia N (NAN) flow at the omasal canal, and a quadratic effect on true protein yield, with maximal protein production at 12.3% RDP. However, dietary RDP had a positive linear effect on total N excretion, with urinary N accounting for most of the increase, and a negative linear effect on environmental N efficiency (kg of milk produced per kg of N excreted). Therefore, a compromise between profitability and environmental quality was achieved at a dietary RDP level of 11.7% of DM. Observed microbial NAN flow and RDP supply were higher and RUP flow was lower than those predicted by the NRC (2001) model. The NRC (2001) model overpredicted production responses to RUP compared with the results in this study. Replacing default NRC degradation rates for protein supplements with rates measured in vivo resulted in similar observed and predicted values, suggesting that in situ degradation rates used by the NRC are slower than apparent rates in this study.


Assuntos
Bovinos/fisiologia , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Lactação/fisiologia , Nitrogênio/metabolismo , Rúmen/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Bactérias/metabolismo , Dieta , Fibras na Dieta/administração & dosagem , Digestão , Fezes/química , Feminino , Medicago sativa , Nitrogênio/urina , Purinas/urina , Rúmen/microbiologia , Silagem , Zea mays
17.
J Dairy Sci ; 87(9): 2997-3009, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15375061

RESUMO

Adding sugar to the diet has been reported to improve production in dairy cows. In each of 2 trials, 48 lactating Holsteins (8 with ruminal cannulas) were fed covariate diets for 2 wk, blocked by days in milk into 12 groups of 4, and then randomly assigned to diets based on alfalfa silage containing 4 levels of dried molasses (trial 1) or liquid molasses (trial 2). In both studies, production data were collected for 8 wk, ruminal samples were taken in wk 4 and 8, and statistical models were used that included covariate means and block. In trial 1, experimental diets contained 18% CP and 0, 4, 8, or 12% dried molasses with 2.6, 4.2, 5.6, or 7.2% total sugar. With increasing sugar, there was a linear increase in dry matter intake (DMI), and digestibility of dry matter (DM) and organic matter (OM), but no effect on yield of milk or protein. This resulted in linear decreases in fat-corrected milk (FCM)/DMI and milk N/N-intake. There was a linear decrease in urinary N with increasing sugar, and quadratic effects on milk fat content, yield of fat and FCM, and ruminal ammonia. Mean optimum from these quadratic responses was 4.8% total sugar in these diets. In trial 2, experimental diets contained 15.6% crude protein (CP) and 0, 3, 6, or 9% liquid molasses with 2.6, 4.9, 7.4, or 10.0% total sugar, respectively. Again, there were linear declines in FCM/DMI and milk N/N-intake with increasing sugar, but quadratic responses for DMI, yield of milk, protein, and SNF, digestibility of neutral detergent fiber and acid detergent fiber, milk urea, urinary excretion of purine derivatives, and ruminal ammonia. Mean optimum from all quadratic responses in this trial was 6.3% total sugar. An estimate of an overall optimum, based on yield of fat and FCM (trial 1) and yield of milk, protein, and SNF (trial 2), was 5.0% total sugar, equivalent to adding 2.4% sugar to the basal diets. Feeding more than 6% total sugar appeared to depress production.


Assuntos
Bovinos/fisiologia , Dieta , Lactação , Medicago sativa , Melaço , Zea mays , Amônia/análise , Animais , Sacarose Alimentar/administração & dosagem , Digestão , Ingestão de Alimentos , Feminino , Lipídeos/análise , Leite/química , Proteínas do Leite/análise , Nitrogênio/administração & dosagem , Nitrogênio/urina , Purinas/urina , Rúmen/química , Silagem , Ureia/análise
18.
J Dairy Sci ; 87(2): 359-68, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14762079

RESUMO

Effectiveness of low level monensin supplementation on N utilization in lactating dairy cows fed alfalfa silage was assessed using 48 multiparous Holsteins. Cows were fed a covariate diet [% of dry matter (DM): 56% alfalfa silage, 39% ground high moisture corn, 3% soybean meal, 1% ground corn, 1% vitamin-mineral supplements] for 2 wk, then grouped by days in milk into blocks of 4. Cows were randomly assigned within blocks to 1 of 4 diets that were fed for 10 wk: 1) control (covariate diet), 2) control plus 3% fish meal (replacing DM from high moisture corn), 3) monensin (10 mg/kg DM), and 4) monensin plus 3% fish meal. Diets 1 and 3 averaged 16.7% crude protein (25% from free AA in alfalfa silage); diets 2 and 4 averaged 18.5% crude protein. Monensin intake averaged 16 mg/d on diets 1 and 2 (due to contamination) and 248 mg/d on diets 3 and 4. There was no effect of fish meal or monensin on DM intake. However, weight gain and yield of milk, protein, and SNF increased with fish meal feeding, indicating metabolizable protein limited production. Feeding monensin increased blood glucose but reduced yield of 3.5% fat-corrected milk, milk fat content and yield, and milk protein content and yield. Apparent N efficiency was greatest on monensin (diet 3) but lowest on monensin plus fish meal (diet 4). Fish meal reduced blood glucose concentration and apparent N efficiency, and increased concentrations of milk and blood urea. Monensin increased ruminal propionate concentration and decreased concentration of acetate and butyrate and acetate:propionate in ruminally cannulated cows fed the experimental diets. However, these changes were small, suggesting that too little monensin was fed. Fish meal reduced ruminal total amino acid (AA) but monensin did not alter ruminal NH(3) or total AA. Both fish meal and monensin increased NH(3) formation from casein AA using ruminal inoculum from the cannulated cows. There was no evidence from this trial that feeding 250 mg of monensin per day to lactating cows improved N utilization by reducing ruminal catabolism of the large amounts of free AA in alfalfa silage.


Assuntos
Bovinos/fisiologia , Dieta , Lactação , Medicago sativa , Monensin/administração & dosagem , Silagem , Acetatos/análise , Amônia/metabolismo , Animais , Butiratos/análise , Caseínas/metabolismo , Suplementos Nutricionais , Feminino , Produtos Pesqueiros , Leite/química , Proteínas do Leite/análise , Propionatos/análise , Rúmen/metabolismo , Glycine max , Zea mays
19.
J Dairy Sci ; 86(4): 1292-305, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12741554

RESUMO

Ten ruminally cannulated lactating Holstein cows that were part of a larger trial studying the effects of feeding different proteins on milk production were used in a replicated 5 x 5 Latin square to quantify flows of microbial and rumen-undegradable protein (RUP) in omasal digesta. Cows were fed total mixed rations containing (dry matter basis) 44% corn silage, 22% alfalfa silage, 2% urea, and 31% concentrate. The basal diet contained 31% high-moisture corn; equal N from one of four protein supplements was added to the other diets at the expense of corn: 9% solvent soybean meal (SSBM), 10% expeller soybean meal (ESBM), 5.5% blood meal (BM), and 7% corn gluten meal (CGM). Omasal sampling was used to quantify total AA N (TAAN) and nonammonia N (NAN) flows from the rumen. Estimates of RUP were made from differences between total and microbial N flows, including a correction for RUP in the basal diet. Modifying a spectrophotometric assay improved total purine recovery from isolated bacteria and omasal samples and gave estimates of microbial TAAN and NAN flows that were similar to a standard HPLC method. Linear programming, based on AA patterns of the diet and isolated omasal bacteria and ruminal protozoa, appeared to overestimate microbial TAAN and NAN flows compared to the purine assays. Yields of microbial TAAN and NAN determined using any method was not affected by diet and averaged 32 to 35 g NAN per kilogram of organic matter truly digested in the rumen. On average, National Research Council (NRC) equations underpredicted microbial N flows by 152 g/d (vs. HPLC), 168 g/d (vs. spectrophotometry), and 244 g/d (vs. linear programming). Estimates of RUP (means from the HPLC and spectrophotometric methods) were: SSBM, 27%, ESBM, 45%, BM, 60%, and CGM, 73%. Except for CGM, RUP values averaged about 20 percentage units lower than those reported by the NRC.


Assuntos
Bactérias/metabolismo , Bovinos/fisiologia , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Omaso/metabolismo , Aminoácidos/análise , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Cromatografia Líquida de Alta Pressão , Proteínas Alimentares/análise , Digestão , Eucariotos/metabolismo , Feminino , Nitrogênio/análise , Nitrogênio/metabolismo , Omaso/química , Purinas/análise , Rúmen/metabolismo , Rúmen/microbiologia , Glycine max , Espectrofotometria , Zea mays
20.
J Dairy Sci ; 86(3): 835-43, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12703620

RESUMO

Twenty-five (10 ruminally cannulated) Holstein cows averaging 82 +/- 34 d in milk were assigned to 5 x 5 Latin squares (21-d periods) and fed diets supplemented with one of four different proteins to assess effects on production, ruminal metabolism, omasal flow of N fractions, and degradation rates of protein supplements. Total mixed diets contained (dry matter basis) 44% corn silage, 22% alfalfa silage, 2% urea, and 31% concentrate. Five concentrate mixes were fed: 31% high-moisture shelled corn (HMSC; basal); 9% solvent soybean meal (SSBM), 22% HMSC; 10% expeller soybean meal (ESBM), 21% HMSC; 5.5% blood meal (BM), 25.5% HMSC; and 7% corn gluten meal (CGM), 24% HMSC. Diets averaged, respectively, 15.8, 19.1, 19.7, 20.3, and 19.3% crude protein. Feeding the basal diet reduced intake and yield of milk, fat-corrected milk (FCM), and all milk components compared to the protein-supplemented diets. Milk yield was higher for cows fed ESBM and CGM, fat yield was higher for cows fed SSBM and CGM, but FCM and protein yields were not different among cows fed supplemental protein. Based on omasal sampling, mean in vivo estimates of ruminal degradation rate for the crude protein in SSBM, ESBM, BM, and CGM was, respectively, 0.417, 0.179, 0.098, and 0.051/h (computed using passage rates observed for the small particle phase; mean = 0.14/h), and 0.179, 0.077, 0.042, and 0.026/h (computed using a passage rate of 0.06/h). The in vivo degradation rate computed for SSBM at a passage rate = 0.06/h was similar to that estimated using the inhibitor in vitro method. However, in vivo degradation rates computed at passage rate = 0.06/h for ESBM, BM, and CGM were about two, four, and three times more rapid than those estimated by inhibitor in vitro. Experimental proteins fed in this trial will be used as standards for developing in vitro methods for predicting rates of ruminal protein degradation.


Assuntos
Bovinos/fisiologia , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Rúmen/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Fibras na Dieta/metabolismo , Suplementos Nutricionais , Digestão , Feminino , Concentração de Íons de Hidrogênio , Lactação , Lipídeos/análise , Medicago sativa , Leite/química , Nitrogênio/metabolismo , Silagem , Glycine max , Aumento de Peso , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA