Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Nutrients ; 12(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245197

RESUMO

BACKGROUND: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). METHODS: In a double-blind randomised parallel group design, 16 resistance-trained men aged 18 to 35 years completed a 7-d RT protocol, consisting of three lower-body RT sessions on non-consecutive days. Participants consumed a controlled diet (146 kJ·kg-1·d-1, 1.7 g·kg-1·d-1 protein) with either a whey protein supplement or an isonitrogenous control (0.33 g·kg-1·d-1 protein). To measure myoPS, 400 ml of deuterium oxide (D2O) (70 atom %) was ingested the day prior to starting the study and m. vastus lateralis biopsies were taken before and after RT-intervention. Myofibrillar fractional synthetic rate (myoFSR) was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Pyr-IRMS). Muscle recovery parameters (i.e., countermovement jump height, isometric-squat force, muscle soreness and serum creatine kinase) were assessed daily. RESULTS: MyoFSR PRE was 1.6 (0.2) %∙d-1 (mean (SD)). Whey protein supplementation had no effect on myoFSR (p = 0.771) or any recovery parameter (p = 0.390-0.989). CONCLUSIONS: Over an intense 7-d RT protocol, 0.33 g·kg-1·d-1 of supplemental whey protein does not enhance day-to-day measures of myoPS or postexercise recovery in resistance-trained men.


Assuntos
Suplementos Nutricionais , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Biossíntese de Proteínas , Treinamento Resistido , Proteínas do Soro do Leite/administração & dosagem , Adolescente , Adulto , Biomarcadores , Expressão Gênica , Humanos , Masculino , Força Muscular , Adulto Jovem
3.
Curr Opin Clin Nutr Metab Care ; 23(3): 174-180, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32175954

RESUMO

PURPOSE OF REVIEW: Skeletal muscle has many essential roles in maintaining human health, not only being crucial for locomotion, but further as a metabolically important organ. Muscle wasting in disease (cachexia) is highly prevalent, associated with poor clinical outcomes and is not fully reversible with nutritional interventions. Understanding proteostasis in diseased states is of great importance to design novel, effective nutritional/nutraceutical strategies aimed at alleviating muscle wasting. In this review, we will provide an update on muscle kinetics in disease and the effects of nutritional interventions. RECENT FINDINGS: Whole body and skeletal muscle kinetics are commonly shown to be imbalanced in disease, promoting overall catabolism that underlies the development of cachexia. However, recent advancements in defining the effectiveness of nutritional interventions on muscle anabolism are clouded by heterogenous patient populations and a lack of direct incorporation stable isotope techniques. Current recommendations are focused on combating malnutrition, with increased protein intake (high in EAA) demonstrating promise. SUMMARY: Recent progress in understanding catabolic states in cachexia across disease is minimal. Further, studies investigating muscle-specific protein turnover along with nutritional interventions are scarce. As such, there is a significant requirement for strong RCT's investigating both acute and chronic nutritional interventions and their impact on skeletal muscle in individual disease states.


Assuntos
Caquexia/metabolismo , Suplementos Nutricionais , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Terapia Nutricional/métodos , Caquexia/etiologia , Caquexia/terapia , Humanos , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Necessidades Nutricionais
4.
Front Nutr ; 6: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032258

RESUMO

Background: We previously showed that daily consumption of a multi-ingredient nutritional supplement increased lean mass in older men, but did not enhance lean tissue gains during a high-intensity interval training (HIIT) plus resistance exercise training (RET) program. Here, we aimed to determine whether these divergent observations aligned with the myofibrillar protein synthesis (MyoPS) response to acute unaccustomed and accustomed resistance exercise. Methods: A sub-sample of our participants were randomly allocated (n = 15; age: 72 ± 7 years; BMI: 26.9 ± 3.1 kg/m2 [mean ± SD]) to ingest an experimental supplement (SUPP, n = 8: containing whey protein, creatine, vitamin D, and n-3 PUFA) or control beverage (CON, n = 7: 22 g maltodextrin) twice per day for 21 weeks. After 7 weeks of consuming the beverage alone (Phase 1: SUPP/CON only), subjects completed 12 weeks of RET (twice per week) + HIIT (once per week) (Phase 2: SUPP/CON + EX). Orally administered deuterated water was used to measure integrated rates of MyoPS over 48 h following a single session of resistance exercise pre- (unaccustomed) and post-training (accustomed). Results: Following an acute bout of accustomed resistance exercise, 0-24 h MyoPS was 30% higher than rest in the SUPP group (effect size: 0.86); however, in the CON group, 0-24 h MyoPS was 0% higher than rest (effect size: 0.04). Nonetheless, no within or between group changes in MyoPS were statistically significant. When collapsed across group, rates of MyoPS in recovery from acute unaccustomed resistance exercise were positively correlated with training-induced gains in whole body lean mass (r = 0.63, p = 0.01). Conclusion: There were no significant between-group differences in MyoPS pre- or post-training. Integrated rates of MyoPS post-acute exercise in the untrained state were positively correlated with training-induced gains in whole body lean mass. Our finding that supplementation did not alter 0-48 h MyoPS following 12 weeks of training suggests a possible adaptive response to longer-term increased protein intake and warrants further investigation. This study was registered at ClinicalTrials.gov. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02281331.

5.
Exp Gerontol ; 110: 202-208, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890270

RESUMO

BACKGROUND: Oxidative stress and inflammation may contribute to anabolic resistance in response to protein and exercise in older adults. We investigated whether consumption of montmorency cherry concentrate (MCC) increased anabolic sensitivity to protein ingestion and resistance exercise in healthy older men. METHODS: Sixteen healthy older men were randomized to receive MCC (60 mL·d-1) or placebo (PLA) for two weeks, after baseline measures in week 1. During week 3, participants consumed 10 g whey protein·d-1 and completed three bouts of unilateral leg resistance exercise (4 × 8-10 repetitions at 80% 1RM). Participants consumed a bolus (150 mL) and weekly (50 mL) doses of deuterated water. Body water 2H enrichment was measured in saliva and vastus lateralis biopsies were taken from the non-exercised leg after weeks 1, 2 and 3, and the exercised leg after week 3, to measure tracer incorporation at rest, in response to protein and protein + exercise. RESULTS: Myofibrillar protein synthesis increased in response to exercise + protein compared to rest (p < 0.05) in both groups, but there was no added effect of supplement (MCC: 1.79 ±â€¯0.75 EX vs 1.15 ±â€¯0.40 rest; PLA: 2.22 ±â€¯0.54 vs 1.21 ±â€¯0.18; all %·d-1). Muscle total NFĸB protein was decreased with exercise and protein in MCC (NFĸB: -20.7 ±â€¯17.5%) but increased in PLA (NFĸB: 17.8 ±â€¯31.3%, p = 0.073). CONCLUSION: Short-term MCC ingestion does not affect the anabolic response to protein and exercise in healthy, relatively active, older men, despite MCC ingestion attenuating expression of proteins involved in the muscle inflammatory response to exercise, which may influence the chronic training response.


Assuntos
Suplementos Nutricionais , Músculo Esquelético/fisiologia , Polifenóis/farmacologia , Prunus avium/química , Treinamento Resistido , Idoso , Deutério , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Miofibrilas/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas , Músculo Quadríceps/patologia , Proteínas do Soro do Leite/administração & dosagem
6.
Clin Nutr ; 37(6 Pt A): 2011-2021, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29031484

RESUMO

BACKGROUND & AIMS: Impaired anabolic responses to nutrition and exercise contribute to loss of skeletal muscle mass with ageing (sarcopenia). Here, we tested responses of muscle protein synthesis (MPS), in the under represented group of older women, to leucine-enriched essential amino acids (EAA) in comparison to a large bolus of whey protein (WP). METHODS: Twenty-four older women (65 ± 1 y) received (N = 8/group) 1.5 g leucine-enriched EAA supplements (LEAA_1.5), 6 g LEAA (LEAA_6) in comparison to 40 g WP. A primed constant I.V infusion of 13C6-phenylalanine was used to determine MPS at baseline and in response to feeding (FED) and feeding-plus-exercise (FED-EX; 6 × 8 unilateral leg extensions; 75%1-RM). We quantified plasma insulin/AA concentrations, leg femoral blood flow (LBF)/muscle microvascular blood flow (MBF), and anabolic signalling via immunoblotting. RESULTS: Plasma insulineamia and EAAemia were greater and more prolonged with WP than LEAA, although LEAA_6 peaked at similar levels to WP. Neither LEAA or WP modified LBF or MBF. FED increased MPS similarly in the LEAA_1.5, LEAA_6 and WP (P < 0.05) groups over 0-2 h, with MPS significantly higher than basal in the LEAA_6 and WP groups only over 0-4 h. However, FED-EX increased MPS similarly across all the groups from 0 to 4 h (P < 0.05). Only p-p70S6K1 increased with WP at 2 h in FED (P < 0.05), and at 2/4 h in FED-EX (P < 0.05). CONCLUSIONS: In conclusion, LEAA_1.5, despite only providing 0.6 g of leucine, robustly (perhaps maximally) stimulated MPS, with negligible trophic advantage of greater doses of LEAA or even to 40 g WP. Highlighting that composition of EAA, in particular the presence of leucine rather than amount is most crucial for anabolism.


Assuntos
Exercício Físico/fisiologia , Leucina , Músculo Esquelético/efeitos dos fármacos , Proteínas do Soro do Leite , Idoso , Aminoácidos Essenciais/sangue , Suplementos Nutricionais , Feminino , Humanos , Insulina/sangue , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiologia , Leucina/administração & dosagem , Leucina/farmacologia , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Proteínas do Soro do Leite/administração & dosagem , Proteínas do Soro do Leite/farmacologia
7.
Curr Opin Clin Nutr Metab Care ; 20(5): 375-381, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28650854

RESUMO

PURPOSE OF REVIEW: Methods that inform on dynamic metabolism that can be applied to clinical populations to understand disease progression and responses to therapeutic interventions are of great importance. This review perspective will highlight recent advances, development, and applications of the multivalent stable isotope tracer deuterium oxide (D2O) to the study of substrate metabolism with particular reference to protein, lipids, and nucleic acids, and how these methods can be readily applied within clinical and pharmaceutical research. RECENT FINDINGS: Advances in the application of D2O techniques now permit the simultaneous dynamic measurement of a range of substrates (i.e. protein, lipid, and nucleic acids, along with the potential for OMICs methodologies) with minimal invasiveness further creating opportunities for long-term 'free living' measures that can be used in clinical settings. These techniques have recently been applied to ageing populations and further in cancer patients revealing altered muscle protein metabolism. Additionally, the efficacy of numerous drugs in improving lipoprotein profiles and controlling cellular proliferation in leukaemia have been revealed. SUMMARY: D2O provides opportunities to create a more holistic picture of in-vivo metabolic phenotypes, providing a unique platform for development in clinical applications, and the emerging field of personalized medicine.


Assuntos
Pesquisa Biomédica/métodos , Metabolismo Energético , Metabolômica/métodos , Animais , Pesquisa Biomédica/tendências , Óxido de Deutério , Humanos , Metabolismo dos Lipídeos , Metabolômica/tendências , Músculo Esquelético/metabolismo , Ácidos Nucleicos/metabolismo , Proteômica/métodos , Proteômica/tendências
8.
Am J Physiol Endocrinol Metab ; 306(5): E571-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381002

RESUMO

Quantification of muscle protein synthesis (MPS) remains a cornerstone for understanding the control of muscle mass. Traditional [(13)C]amino acid tracer methodologies necessitate sustained bed rest and intravenous cannulation(s), restricting studies to ~12 h, and thus cannot holistically inform on diurnal MPS. This limits insight into the regulation of habitual muscle metabolism in health, aging, and disease while querying the utility of tracer techniques to predict the long-term efficacy of anabolic/anticatabolic interventions. We tested the efficacy of the D2O tracer for quantifying MPS over a period not feasible with (13)C tracers and too short to quantify changes in mass. Eight men (22 ± 3.5 yr) undertook one-legged resistance exercise over an 8-day period (4 × 8-10 repetitions, 80% 1RM every 2nd day, to yield "nonexercised" vs. "exercise" leg comparisons), with vastus lateralis biopsies taken bilaterally at 0, 2, 4, and 8 days. After day 0 biopsies, participants consumed a D2O bolus (150 ml, 70 atom%); saliva was collected daily. Fractional synthetic rates (FSRs) of myofibrillar (MyoPS), sarcoplasmic (SPS), and collagen (CPS) protein fractions were measured by GC-pyrolysis-IRMS and TC/EA-IRMS. Body water initially enriched at 0.16-0.24 APE decayed at ~0.009%/day. In the nonexercised leg, MyoPS was 1.45 ± 0.10, 1.47 ± 0.06, and 1.35 ± 0.07%/day at 0-2, 0-4, and 0-8 days, respectively (~0.05-0.06%/h). MyoPS was greater in the exercised leg (0-2 days: 1.97 ± 0.13%/day; 0-4 days: 1.96 ± 0.15%/day, P < 0.01; 0-8 days: 1.79 ± 0.12%/day, P < 0.05). CPS was slower than MyoPS but followed a similar pattern, with the exercised leg tending to yield greater FSRs (0-2 days: 1.14 ± 0.13 vs. 1.45 ± 0.15%/day; 0-4 days: 1.13 ± 0.07%/day vs. 1.47 ± 0.18%/day; 0-8 days: 1.03 ± 0.09%/day vs. 1.40 ± 0.11%/day). SPS remained unchanged. Therefore, D2O has unrivaled utility to quantify day-to-day MPS in humans and inform on short-term changes in anabolism and presumably catabolism alike.


Assuntos
Óxido de Deutério/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas/fisiologia , Adulto , Exercício Físico/fisiologia , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Treinamento Resistido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA