Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; 33(7): e4301, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198958

RESUMO

Identification of relevant biomarkers is fundamental to understand biological processes of neurodegenerative diseases and to evaluate therapeutic efficacy. Atrophy of brain structures has been proposed as a biomarker, but it provides little information about biochemical events related to the disease. Here, we propose to identify early and relevant biomarkers by combining biological specificity provided by 1 H-MRS and high spatial resolution offered by gluCEST imaging. For this, two different genetic mouse models of Huntington's disease (HD)-the Ki140CAG model, characterized by a slow progression of the disease, and the R6/1 model, which mimics the juvenile form of HD-were used. Animals were scanned at 11.7 T using a protocol combining 1 H-MRS and gluCEST imaging. We measured a significant decrease in levels of N-acetyl-aspartate, a metabolite mainly located in the neuronal compartment, in HD animals, and the decrease seemed to be correlated with disease severity. In addition, variations of tNAA levels were correlated with striatal volumes in both models. Significant variations of glutamate levels were also observed in Ki140CAG but not in R6/1 mice. Thanks to its high resolution, gluCEST provided complementary insights, and we highlighted alterations in small brain regions such as the corpus callosum in Ki140CAG mice, whereas the glutamate level was unchanged in the whole brain of R6/1 mice. In this study, we showed that 1 H-MRS can provide key information about biological processes occurring in vivo but was limited by the spatial resolution. On the other hand, gluCEST may finely point to alterations in unexpected brain regions, but it can also be blind to disease processes when glutamate levels are preserved. This highlights in a practical context the complementarity of the two methods to study animal models of neurodegenerative diseases and to identify relevant biomarkers.


Assuntos
Ácido Glutâmico/metabolismo , Doença de Huntington/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Atrofia , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Neostriado/diagnóstico por imagem , Neostriado/patologia
2.
J Biol Chem ; 287(2): 1361-70, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22123819

RESUMO

Brain energy deficit has been a suggested cause of Huntington disease (HD), but ATP depletion has not reliably been shown in preclinical models, possibly because of the immediate post-mortem changes in cellular energy metabolism. To examine a potential role of a low energy state in HD, we measured, for the first time in a neurodegenerative model, brain levels of high energy phosphates using microwave fixation, which instantaneously inactivates brain enzymatic activities and preserves in vivo levels of analytes. We studied HD transgenic R6/2 mice at ages 4, 8, and 12 weeks. We found significantly increased creatine and phosphocreatine, present as early as 4 weeks for phosphocreatine, preceding motor system deficits and decreased ATP levels in striatum, hippocampus, and frontal cortex of R6/2 mice. ATP and phosphocreatine concentrations were inversely correlated with the number of CAG repeats. Conversely, in mice injected with 3-nitroproprionic acid, an acute model of brain energy deficit, both ATP and phosphocreatine were significantly reduced. Increased creatine and phosphocreatine in R6/2 mice was associated with decreased guanidinoacetate N-methyltransferase and creatine kinase, both at the protein and RNA levels, and increased phosphorylated AMP-dependent protein kinase (pAMPK) over AMPK ratio. In addition, in 4-month-old knock-in Hdh(Q111/+) mice, the earliest metabolic alterations consisted of increased phosphocreatine in the frontal cortex and increased the pAMPK/AMPK ratio. Altogether, this study provides the first direct evidence of chronic alteration in homeostasis of high energy phosphates in HD models in the earliest stages of the disease, indicating possible reduced utilization of the brain phosphocreatine pool.


Assuntos
Trifosfato de Adenosina/metabolismo , Química Encefálica , Metabolismo Energético , Lobo Frontal/metabolismo , Doença de Huntington/metabolismo , Fosfocreatina/metabolismo , Trifosfato de Adenosina/genética , Animais , Convulsivantes/farmacologia , Modelos Animais de Doenças , Lobo Frontal/patologia , Técnicas de Introdução de Genes , Guanidinoacetato N-Metiltransferase/genética , Guanidinoacetato N-Metiltransferase/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nitrocompostos/farmacologia , Fosfocreatina/genética , Propionatos/farmacologia
3.
Proc Natl Acad Sci U S A ; 106(10): 3988-93, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19234118

RESUMO

Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, (31)P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish (31)P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer (31)P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (V(TCA)), and the rate of ATP synthesis (V(ATP)) in primate monkeys by using (18)F-FDG PET scan, indirect (13)C MRS, and saturation transfer (31)P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 +/- 0.07 micromol x g(-1) x min(-1), V(TCA) = 0.63 +/- 0.12 micromol x g(-1) x min(-1), and V(ATP) = 7.8 +/- 2.3 micromol x g(-1) x min(-1). The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer (31)P MRS for directly evaluating ATP synthesis in the living brain.


Assuntos
Trifosfato de Adenosina/biossíntese , Encéfalo/fisiologia , Metabolismo Energético/fisiologia , Imageamento Tridimensional/métodos , Animais , Ciclo do Ácido Cítrico , Fluordesoxiglucose F18 , Glucose/metabolismo , Haplorrinos , Espectroscopia de Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA