Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 45(9): 1019-1026, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698304

RESUMO

The Schisandraceae family is reported to have a range of pharmacological activities, including anti-inflammatory effects. As with all herbal preparations, extracts of Schisandra species are mixtures composed of >50 lignans, especially schizandrins, deoxyschizandrins, and gomisins. In China, Schisandra sphenanthera extract (SSE) is often coadministered with immunosuppressant treatment of transplant recipients. In cases of coadministration, the potential for herb-drug interactions (HDIs) increases. Clinical studies have been used to assess HDI potential of SSE. Results demonstrated that chronic SSE administration reduced midazolam (MDZ) clearance by 52% in healthy volunteers. Although clinical studies are definitive and considered the "gold standard," these studies are impractical for routine HDI assessments. Alternatively, in vitro strategies can be used to reduce the need for clinical studies. Transporter-certified sandwich-cultured human hepatocytes (SCHHs) provide a fully integrated hepatic cell system that maintains drug clearance pathways (metabolism and transport) and key regulatory pathways constitutive active/androstane receptor and pregnane X receptor (CAR/PXR) necessary for quantitative assessment of HDI potential. Mechanistic studies conducted in SCHHs demonstrated that SSE and the more commonly used dietary supplement Schisandra chinensis extract (SCE) inhibited CYP3A4/5-mediated metabolism and induced CYP3A4 mRNA in a dose-dependent manner. SSE and SCE reduced MDZ clearance to 0.577- and 0.599-fold of solvent control, respectively, in chronically exposed SCHHs. These in vitro results agreed with SSE clinical findings and predicted a similar in vivo HDI effect with SCE exposure. These findings support the use of an SCHH system that maintains transport, metabolic, and regulatory functionality for routine HDI assessments to predict clinically relevant clearance interactions.


Assuntos
Hepatócitos/metabolismo , Interações Ervas-Drogas , Midazolam/farmacocinética , Extratos Vegetais/farmacocinética , Schisandra/química , Células Cultivadas , Hepatócitos/citologia , Humanos , Lignanas/farmacocinética , Lignanas/farmacologia , Midazolam/farmacologia , Extratos Vegetais/farmacologia
2.
Regul Toxicol Pharmacol ; 76: 1-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26776752

RESUMO

The use of natural products (NPs), including herbal medicines and other dietary supplements, by North Americans continues to increase across all age groups. This population has access to conventional medications, with significant polypharmacy observed in older adults. Thus, the safety of the interactions between multi-ingredient NPs and drugs is a topic of paramount importance. Considerations such as history of safe use, literature data from animal toxicity and human clinical studies, and NP constituent characterization would provide guidance on whether to assess NP-drug interactions experimentally. The literature is replete with reports of various NP extracts and constituents as potent inhibitors of drug metabolizing enzymes, and transporters. However, without standard methods for NP characterization or in vitro testing, extrapolating these reports to clinically-relevant NP-drug interactions is difficult. This lack of a clear definition of risk precludes clinicians and consumers from making informed decisions about the safety of taking NPs with conventional medications. A framework is needed that describes an integrated robust approach for assessing NP-drug interactions; and, translation of the data into formulation alterations, dose adjustment, labelling, and/or post-marketing surveillance strategies. A session was held at the 41st Annual Summer Meeting of the Toxicology Forum in Colorado Springs, CO, to highlight the challenges and critical components that should be included in a framework approach.


Assuntos
Suplementos Nutricionais/efeitos adversos , Interações Ervas-Drogas , Preparações de Plantas/efeitos adversos , Testes de Toxicidade/métodos , Animais , Bioensaio , Biotransformação , Suplementos Nutricionais/normas , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Farmacovigilância , Preparações de Plantas/administração & dosagem , Preparações de Plantas/farmacocinética , Preparações de Plantas/normas , Polimedicação , Controle de Qualidade , Medição de Risco , Testes de Toxicidade/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA