Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232864

RESUMO

The biofilm-associated infections of bones are life-threatening diseases, requiring application of dedicated antibiotics in order to counteract the tissue damage and spread of microorganisms. The in vitro analyses on biofilm formation and susceptibility to antibiotics are frequently carried out using methods that do not reflect conditions at the site of infection. To evaluate the influence of nutrient accessibility on Staphylococcus aureus biofilm development in vitro, a cohesive set of analyses in three different compositional media was performed. Next, the efficacy of four antibiotics used in bone infection treatment, including gentamycin, ciprofloxacin, levofloxacin, and vancomycin, against staphylococcal biofilm, was also assessed. The results show a significant reduction in the ability of biofilm to grow in a medium containing elements occurring in the serum, which also translated into the diversified changes in the efficacy of used antibiotics, compared to the setting in which conventional media were applied. The differences indicate the need for implementation of adequate in vitro models that closely mimic the infection site. The results of the present research may be considered an essential step toward the development of in vitro analyses aiming to accurately indicate the most suitable antibiotic to be applied against biofilm-related infections of bones.


Assuntos
Osteomielite , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Ciprofloxacina , Gentamicinas , Humanos , Levofloxacino/farmacologia , Levofloxacino/uso terapêutico , Testes de Sensibilidade Microbiana , Osteomielite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Vancomicina/farmacologia , Vancomicina/uso terapêutico
2.
Molecules ; 27(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35807343

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening, hard-to-heal infections associated with the presence of a biofilm. Essential oils (EOs) are promising agents to combat pseudomonal infections because of the alleged antimicrobial activity of their volatile fractions and liquid forms. Therefore, the purpose of this paper was to evaluate the antibacterial efficacy of both volatile and liquid phases of seven EOs (thyme, tea tree, basil, rosemary, eucalyptus, menthol mint, lavender) against P. aeruginosa biofilm and planktonic cells with the use of a broad spectrum of analytical in vitro methods. According to the study results, the antibacterial activity of EOs in their liquid forms varied from that of the volatile fractions. Overall, liquid and volatile forms of rosemary EO and tea tree EO displayed significant antibiofilm effectiveness. The outcomes indicate that these particular EOs possess the potential to be used in the therapy of P. aeruginosa infections.


Assuntos
Óleos Voláteis , Rosmarinus , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Plâncton , Pseudomonas aeruginosa , Chá
3.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443363

RESUMO

The antimicrobial properties of herbs from Papaveraceae have been used in medicine for centuries. Nevertheless, mutual relationships between the individual bioactive substances contained in these plants remain poorly elucidated. In this work, phytochemical composition of extracts from the aerial and underground parts of five Papaveraceae species (Chelidonium majus L., Corydalis cava (L.) Schweigg. and Körte, C. cheilanthifolia Hemsl., C. pumila (Host) Rchb., and Fumaria vaillantii Loisel.) were examined using LC-ESI-MS/MS with a triple quadrupole analyzer. Large differences in the quality and quantity of all analyzed compounds were observed between species of different genera and also within one genus. Two groups of metabolites predominated in the phytochemical profiles. These were isoquinoline alkaloids and, in smaller amounts, non-phenolic carboxylic acids and phenolic compounds. In aerial and underground parts, 22 and 20 compounds were detected, respectively. These included: seven isoquinoline alkaloids: protopine, allocryptopine, coptisine, berberine, chelidonine, sanguinarine, and chelerythrine; five of their derivatives as well as non-alkaloids: malic acid, trans-aconitic acid, quinic acid, salicylic acid, trans-caffeic acid, p-coumaric acid, chlorogenic acid, quercetin, and kaempferol; and vanillin. The aerial parts were much richer in phenolic compounds regardless of the plant species. Characterized extracts were studied for their antimicrobial potential against planktonic and biofilm-producing cells of S. aureus, P. aeruginosa, and C. albicans. The impact of the extracts on cellular metabolic activity and biofilm biomass production was evaluated. Moreover, the antimicrobial activity of the extracts introduced to the polymeric carrier made of bacterial cellulose was assessed. Extracts of C. cheilanthifolia were found to be the most effective against all tested human pathogens. Multiple regression tests indicated a high antimicrobial impact of quercetin in extracts of aerial parts against planktonic cells of S. aureus, P. aeruginosa, and C. albicans, and no direct correlation between the composition of other bioactive substances and the results of antimicrobial activity were found. Conclusively, further investigations are required to identify the relations between recognized and unrecognized compounds within extracts and their biological properties.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Papaveraceae/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/química , Avaliação Pré-Clínica de Medicamentos , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
4.
Molecules ; 25(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784618

RESUMO

Corydalis and Pseudofumaria are two closely related genera from the Papaveraceae subfamily Fumarioideae with Corydalis solida (C. solida) and Pseudofumaria lutea (P. lutea) as two representative species. Phytochemical analysis revealed significant differences in the quality and quantity of isoquinoline alkaloids, phenolic compounds and non-phenolic carboxylic acids between aerial and underground parts of both species. Using the Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technique, 21 compounds were identified: five protoberberine derivatives, three protopine derivatives, four phenanthridine derivatives, as well as three carboxylic acids, two hydroxycinnamic acids, one chlorogenic acid, one phenolic aldehyde, and two flavonoids. Moroever, significant differences in the content of individual compounds were observed between the two studied species. The phytochemical profile of C. solida showed a higher variety of compounds that were present in lower amounts, whereas P. lutea extracts contained fewer compounds but in larger quantities. Protopine was one of the most abundant constituents in C. solida (440-1125 µg/g d.w.) and in P. lutea (1036-1934 µg/g d.w.). Moreover, considerable amounts of coptisine (1526 µg/g) and quercetin (3247 µg/g) were detected in the aerial parts of P. lutea. Extracts from aerial and underground parts of both species were also examined for the antimicrobial potential against S. aureus, P. aeruginosa and C. albicans. P. lutea herb extract was the most effective (MIC at 0.39 mg/L) against all three pathogens.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Corydalis/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Candida albicans/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA