Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 11(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277259

RESUMO

Inhibition of intestinal glucose resorption can serve as an effective strategy for the prevention of an increase in blood glucose levels. We have recently shown that various extracts prepared from guava (Psidium guajava) inhibit sodium-dependent glucose cotransporter 1 (SGLT1)- and glucose transporter 2 (GLUT2)-mediated glucose transport in vitro (Caco-2 cells) and in vivo (C57BL/6N mice). However, the efficacy in humans remains to be confirmed. For this purpose, we conducted a parallelized, randomized clinical study with young healthy adults. Thirty-one volunteers performed an oral glucose tolerance test (OGTT) in which the control group received a glucose solution and the intervention group received a glucose solution containing a guava fruit extract prepared by supercritical CO2 extraction. The exact same extract was used for our previous in vitro and in vivo experiments. Blood samples were collected prior to and up to two hours after glucose consumption to quantitate blood glucose and insulin levels. Our results show that, in comparison to the control group, consumption of guava fruit extract resulted in a significantly reduced increase in postprandial glucose response over the basal fasting plasma glucose levels after 30 min (Δ control 2.60 ± 1.09 mmol/L versus Δ intervention 1.96 ± 0.96 mmol/L; p = 0.039) and 90 min (Δ control 0.44 ± 0.74 mmol/L versus Δ intervention -0.18 ± 0.88 mmol/L; p = 0.023). In addition, we observed a slightly reduced, but non-significant insulin secretion (Δ control 353.82 ± 183.31 pmol/L versus Δ intervention 288.43 ± 126.19 pmol/L, p = 0.302). Interestingly, storage time and repeated freeze-thawing operations appeared to negatively influence the efficacy of the applied extract. Several analytical methods (HPLC-MS, GC-MS, and NMR) were applied to identify putative bioactive compounds in the CO2 extract used. We could assign several substances at relevant concentrations including kojic acid (0.33 mg/mL) and 5-hydroxymethylfurfural (2.76 mg/mL). Taken together, this clinical trial and previous in vitro and in vivo experiments confirm the efficacy of our guava fruit extract in inhibiting intestinal glucose resorption, possibly in combination with reduced insulin secretion. Based on these findings, the development of food supplements or functional foods containing this extract appears promising for patients with diabetes and for the prevention of insulin resistance. Trial registration: 415-E/2319/15-2018 (Ethics Commissions of Salzburg).


Assuntos
Glicemia/efeitos dos fármacos , Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Manipulação de Alimentos/métodos , Frutas , Hipoglicemiantes/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Reabsorção Intestinal/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Psidium , Biomarcadores/sangue , Glicemia/metabolismo , Método Duplo-Cego , Feminino , Frutas/química , Humanos , Hipoglicemiantes/isolamento & purificação , Mucosa Intestinal/metabolismo , Masculino , Extratos Vegetais/isolamento & purificação , Período Pós-Prandial , Psidium/química , Fatores de Tempo
2.
J Mol Neurosci ; 59(2): 260-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26941032

RESUMO

Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation.


Assuntos
Artrite/metabolismo , Doenças Autoimunes/metabolismo , Receptor Tipo 3 de Galanina/genética , Animais , Artrite/genética , Artrite/patologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Permeabilidade Capilar , Edema/metabolismo , Endotélio Vascular/metabolismo , Membro Posterior/patologia , Masculino , Camundongos , Neutrófilos/metabolismo , Receptor Tipo 3 de Galanina/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA