Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Pharmaceutics ; 15(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631341

RESUMO

Leishmaniasis is a disease caused by protozoa species of the Leishmania genus, and the current treatments face several difficulties and obstacles. Most anti-leishmanial drugs are administered intravenously, showing many side effects and drug resistance. The discovery of new anti-leishmanial compounds and the development of new pharmaceutical systems for more efficient and safer treatments are necessary. Copaiba oil-resin (CO) has been shown to be a promising natural compound against leishmaniasis. However, CO displays poor aqueous solubility and bioavailability. Self-emulsifying drug delivery systems (SEDDS) can provide platforms for release of hydrophobic compounds in the gastrointestinal tract, improving their aqueous solubilization, absorption and bioavailability. Therefore, the present work aimed to develop SEDDS containing CO and Soluplus® surfactant for the oral treatment of leishmaniasis. The design of the systems was accomplished using ternary phase diagrams. Emulsification and dispersion time tests were used to investigate the emulsification process in gastric and intestinal environments. The formulations were nanostructured and improved the CO solubilization. Their in vitro antiproliferative activity against promastigote forms of L. amazonensis and L. infantum, and low in vitro cytotoxicity against macrophages were also observed. More studies are necessary to determine effectiveness of SOL in these systems, which can be candidates for further pharmacokinetics and in vivo investigations.

2.
Photodiagnosis Photodyn Ther ; 43: 103659, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336466

RESUMO

BACKGROUND: Sporothrix brasiliensis is a pathogenic dimorphic fungus that affects humans and animals causing sporotrichosis. The treatment of this disease with conventional antifungals commonly results in therapeutic failures and resistance. Therefore, this study aimed to evaluate the in vitro effect of curcumin (CUR) mediated by photodynamic therapy (PDT) in its pure state and incorporated into pharmaceutical formulation in gel form, on the filamentous and yeast forms of S. brasiliensis. METHODS: Cells from both forms of the fungus were treated with pure curcumin (PDT-CUR). For this, CUR concentrations ranging from 0.09 to 50 µM were incubated for 15 min and then irradiated with blue LED at 15 J/cm². Similarly, it was performed with PDT-CUR-gel, at lower concentration with fungistatic action. After, a qualitative and quantitative (colony forming units (CFU)) analysis of the results was performed. Additionally, reactive oxygen species (ROS) were detected by flow cytometry. Results PDT with 0.78 µM of CUR caused a significant reduction (p < 0.05) in cells of the filamentous and yeast form, 1.38 log10 and 1.18 log10, respectively, in comparison with the control. From the concentration of 1.56 µM of CUR, there was a total reduction in the number of CFU (≥ 3 log10). The PDT-CUR-gel, in relation to its base without CUR, presented a significant reduction (p < 0.05) of 0.83 log10 for the filamentous form and for the yeast form, 0.72 log10. ROS release was detected after the PDT-CUR assay, showing that this may be an important pathway of death caused by photoinactivation. Conclusion PDT-CUR has an important in vitro antifungal action against S. brasiliensis strains in both morphologies.


Assuntos
Curcumina , Fotoquimioterapia , Humanos , Animais , Antifúngicos/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Saccharomyces cerevisiae , Espécies Reativas de Oxigênio
3.
Planta Med ; 89(11): 1074-1086, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598603

RESUMO

Periodontal diseases are a global oral health problem affecting almost 10% of the global population. Porphyromonas gingivalis is one of the main bacteria involved in the initiation and progression of inflammatory processes as a result of the action of the cysteine proteases lysin- and arginine-gingipain. Surelease/polycarbophil microparticles containing a lyophilized proanthocyanidin-enriched fraction from the rhizomes of Limonium brasiliense, traditionally named "baicuru" (ethyl acetate fraction), were manufactured. The ethyl acetate fraction was characterized by UHPLC by the presence of samarangenins A and B (12.10 ± 0.07 and 21.05 ± 0.44%, respectively) and epigallocatechin-3-O-gallate (13.44 ± 0.27%). Physiochemical aspects of Surelease/polycarbophil microparticles were characterized concerning particle size, zeta potential, entrapment efficiency, ethyl acetate fraction release, and mucoadhesion. Additionally, the presence of the ethyl acetate fraction-loaded microparticles was performed concerning potential influence on viability of human buccal KB cells, P. gingivalis adhesion to KB cells, gingipain activity, and P. gingivalis biofilm formation. In general, all Surelease/polycarbophil microparticles tested showed strong adhesion to porcine cheek mucosa (93.1 ± 4.2% in a 30-min test), associated with a prolonged release of the ethyl acetate fraction (up to 16.5 ± 0.8% in 24 h). Preincubation of KB cells with Surelease/polycarbophil microparticles (25 µg/mL) resulted in an up to 93 ± 2% reduced infection rate by P. gingivalis. Decreased activity of the P. gingivalis-specific virulence factors lysin- and arginine-gingipain proteases by Surelease/polycarbophil microparticles was confirmed. Surelease/polycarbophil microparticles decreased biofilm formation of P. gingivalis (97 ± 2% at 60 µg/mL). Results from this study prove the promising activity of Surelease/polycarbophil microparticles containing ethyl acetate fraction microparticles as a prophylaxis strategy to prevent the recurrence of P. gingivalis.


Assuntos
Plumbaginaceae , Proantocianidinas , Humanos , Animais , Suínos , Cisteína Endopeptidases Gingipaínas , Porphyromonas gingivalis , Adesinas Bacterianas , Proantocianidinas/farmacologia , Cisteína Endopeptidases , Plumbaginaceae/química
4.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559074

RESUMO

Chronic wound healing represents an impactful financial burden on healthcare systems. In this context, the use of natural products as an alternative therapy reduces costs and maintains effectiveness. Phytotherapeutic gels applied in photodynamic therapy (PDT) have been developed to act as topical healing medicines and antibiotics. The bioactive system is composed of Spirulina sp. (source of chlorophylls) and Copaifera reticulata oil microdroplets, both incorporated into a polymeric blend constituted by kappa-carrageenan (k-car) and F127 copolymer, constituting a system in which all components are bioactive agents. The flow behavior and viscoelasticity of the formulations were investigated. The photodynamic activity was accessed from studies of the inactivation of Staphylococcus aureus bacteria, the main pathogen of hospital relevance. Furthermore, in vivo studies were conducted using eighteen rabbits with dermatitis (grade III and IV) in both paws. The gels showed significant antibiotic potential in vitro, eliminating up to 100% of S. aureus colonies in the presence or absence of light. The k-car reduced 41% of the viable cells; however, its benefits were enhanced by adding chlorophyll and copaiba oil. The animals treated with the phytotherapeutic medicine showed a reduction in lesion size, with healing and re-epithelialization verified in the histological analyses. The animals submitted to PDT displayed noticeable improvement, indicating this therapy's viability for ulcerative and infected wounds. This behavior was not observed in the iodine control treatment, which worsened the animals' condition. Therefore, gel formulations were a viable alternative for future pharmaceutical applications, aiming at topical healing.

5.
Polymers (Basel) ; 14(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36365477

RESUMO

In this study, we developed a bioadhesive emulsion-filled gel containing a high amount of Copaifera reticulata Ducke oil-resin as a veterinary or human clinical proposal. The phytotherapeutic system had easy preparation, low cost, satisfactory healing ability, and fly repellency, making it a cost-effective clinical strategy for wound care and myiasis prevention. Mechanical, rheological, morphological, and physical stability assessments were performed. The results highlight the crosslinked nature of the gelling agent, with three-dimensional channel networks stabilizing the Copaifera reticulata Ducke oil-resin (CrD-Ore). The emulgel presented antimicrobial activity, satisfactory adhesion, hardness, cohesiveness, and viscosity profiles, ensuring the easy spreading of the formulation. Considering dermatological application, the oscillatory responses showed a viscoelastic performance that ensures emulgel retention at the action site, reducing the dosage frequencies. In Vivo evaluations were performed using a case report to treat ulcerative skin wounds aggravated by myiasis in calves and heifers, which demonstrated healing, anti-inflammatory, and repellent performance for the emulsion-filled gel. The emulgel preparation, which is low in cost, shows promise as a drug for wound therapy.

6.
Pharm Dev Technol ; 27(4): 490-501, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35587564

RESUMO

Thermosensitive bioadhesive formulations can display increased retention time, skin permeation, and improve the topical therapy of many drugs. Acne is an inflammatory process triggered by several factors like the proliferation of the bacteria Propionibacterium acnes. Aiming for a new alternative treatment with a natural source, propolis displays great potential due to its antibiotic, anti-inflammatory, and healing properties. This study describes the development of bioadhesive thermoresponsive platform with cellulose derivatives and poloxamer 407 for propolis skin delivery. Propolis ethanolic extract (PES) was added to the formulations with sodium carboxymethylcellulose (CMC) or hydroxypropyl methylcellulose (HPMC) and poloxamer 407 (Polox). The formulations were characterized as rheology, bioadhesion, and mechanical analysis. The selected formulations were investigated as in vitro propolis release, cytotoxicity, ex vivo skin permeation by Fourier Transform Infrared Photoacoustic Spectroscopy, and the activity against P. acnes. Formulations showed suitable sol-gel transition temperature, shear-thinning behavior, and texture profile. CMC presence decreased the cohesiveness and adhesiveness of formulations. Polox/HPMC/PES system displayed less cytotoxicity, modified propolis release governed by anomalous transport, skin permeation, and activity against P. acnes. These results indicate important advantages in the topical treatment of acne and suggest a potential formulation for clinical evaluation.


Assuntos
Acne Vulgar , Própole , Acne Vulgar/tratamento farmacológico , Celulose , Géis/química , Humanos , Derivados da Hipromelose , Poloxâmero/química
7.
J Pharm Sci ; 111(2): 287-292, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34662545

RESUMO

This study presents a phytotherapeutic emulsion-filled gel design composed of Pluronic® F127, Carbopol® C934P, and high level of copaiba oil-resin (PHY-ECO). Mathematical modeling and response surface methodology (RSM) were employed to access the optimal ratio between the oil and the polymer gel-matrix constituents. The chemometric approach showed robust mechanical and thermoresponsive properties for emulsion gel. The model predicts viscosity parameters at 35.0°C (skin temperature) from PHY-ECOs. Optimized PHY-ECOs were described by 18-20% (w/w) F127, 0.25% (w/w) C934P, and 15% (w/w) copaiba oil-resin, and showed interfacial layers properties that led to high physicochemical stability. Besides, it had thermal stimuli-responsive that led large viscosity range before and after skin administration, observed by oscillatory rheology. These behaviors give the optimized smart PHY-ECO high design potential to be used as a pharmaceutical platform for CO delivery, focusing on the anti-inflammatory therapy and skin wound care.


Assuntos
Poloxâmero , Administração Cutânea , Emulsões/química , Poloxâmero/química , Reologia , Viscosidade
8.
Eur J Pharm Sci ; 165: 105956, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314841

RESUMO

Psoriasis is an autoimmune, inflammatory and chronic skin disease in which cell growth and proliferation are increased, causing erythema, lesions and skin's peeling. Oral methotrexate (MTX) is the first-choice drug when phototherapy or retinoid treatment are not effective. Topical administration can be advantageous to better orientate the drug's delivery; however, the stratum corneum performs as a barrier for hydrofilic drugs penetration. This study sought to evaluate two different types of vehicles for MTX on the psoriasis treatment - hydrogel and liquid crystal systems (LCs). Lamellar and hexagonal liquid crystalline phases were selected from a ternary phase diagram based on polysorbate 80, isopropyl miristate and water. The hydrogel was based on alkylated carbomer (ACH). Rheological analysis showed ACH was more elastic than lamellar and hexagonal phases. ACH interacted better with pig skin than LCs in bioadhesion assay. Preclinical study revealed the ACH decreased inflammation in mice with induced psoriasis, being as effective as dexamethasone to regulate epidermis thickness, COX-2 and myeloperoxidase activity and TNF-α level, while LCs demonstrated inflammatory effect. Therefore, MTX-loaded hydrogel based platforms are indicated for local treatment of psoriasis and present great potential for further studies.


Assuntos
Cristais Líquidos , Psoríase , Animais , Hidrogéis , Metotrexato , Camundongos , Psoríase/tratamento farmacológico , Tensoativos , Suínos
9.
PLoS One ; 15(12): e0243197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306677

RESUMO

Vulvovaginal candidiasis (VVC) is a common vaginitis that affects women, especially in childbearing age, caused by Candida albicans in almost 80% of cases. Considering the limited drug arsenal available and the increasing fungal resistance profile, the search for new therapeutic sources with low toxicity and easy administration should be supported. Propolis has been used as a traditional medicine for multiple diseases, considering its particular composition and pharmaceutical properties that permits its wide applicability; it has also emerged as a potential antifungal agent. Thus, this study performed an in vitro and in vivo investigation into the efficacy of a new mucoadhesive thermoresponsive platform for propolis delivery (MTS-PRPe) in a preclinical murine model of VVC treatment caused by C. albicans. The methodologies involved chemical analysis, an assessment of the rheological and mucoadhesive properties of propolis formulations, in vitro and in vivo antifungal evaluations, histological evaluations and electron microscopy of the vaginal mucosa. The results demonstrated the antifungal activity of propolis extract and MTS-PRP against the standard strain and a fluconazole-resistant clinical isolate of C. albicans, in both in vitro and in vivo assays. These results were similar and even better, depending on the propolis concentration, when compared to nystatin. Thus, the formulation containing propolis exhibited good performance against C. albicans in a vulvovaginal candidiasis experimental model, representing a promising opportunity for the treatment of this infection.


Assuntos
Apiterapia/métodos , Candidíase Vulvovaginal/terapia , Sistemas de Liberação de Medicamentos/métodos , Própole/uso terapêutico , Adesivos , Animais , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Própole/administração & dosagem , Reologia
10.
AAPS PharmSciTech ; 21(6): 209, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728887

RESUMO

Topical administration can enable a more efficient therapy based on the improved bioavailability and patient compliance. Wounds and infections can lead to modifications of skin physiology and body protective function. Propolis (PRP) is utilized for skin protection and treatment. However, PRP extracts do not show suitable rheological characteristics and can cause irritation, pain, ulceration, and healing difficulties when they are administered on the harmed skin. Emulgels composed of Carbopol 934P (C934P) and different vegetable oils have been proposed for propolis extract release and may be a good strategy for topical delivery. The aim of this study was to investigate the bioadhesive properties, PRP release profile, skin permeation, and retention, by Franz's diffusion cell and photoacoustic spectroscopy (PS), of these emulgels. Formulations were composed of C934P and passion fruit oil (PF), sweet almond oil (SA), or andiroba oil (AO). PRP or by-product extracts were added to the systems, drug release profile was investigated, and porcine ear skin was utilized for analyses of bioadhesive properties, skin permeation, and retention. All formulations displayed similar bioadhesive force (0.05-0.07 N); PRP release was modified (prolonged), dependent on formulation composition, and mainly governed by diffusion. PS and analysis using diffusion cell showed that the systems could provide dermal permeation and retention, which was more effective for formulations containing AO. Considering the importance of propolis for many skin therapies, the emulgels containing AO for PRP delivery are worthy of biological studies and further clinical evaluation.


Assuntos
Acrilatos/administração & dosagem , Géis/química , Óleos de Plantas/administração & dosagem , Própole/administração & dosagem , Absorção Cutânea/efeitos dos fármacos , Administração Tópica , Animais , Liberação Controlada de Fármacos , Humanos , Reologia , Suínos
11.
Eur J Pharm Sci ; 151: 105372, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450222

RESUMO

Current oral squamous cell carcinoma chemotherapies demonstrate off-target toxicity, which could be reduced by local delivery. Curcumin acts via many cellular targets to give anti-cancer properties; however the bioavailability is hindered by its physicochemical characteristics. The incorporation of curcumin into emulgel systems could be a promising approach for its solubilization and delivery. The aim of this work was to develop emulgel systems containing curcumin for the treatment of oral cancer. The emulgels containing curcumin were prepared with poloxamer 407, acrylic acid derivatives, oil phase (sesame oil or isopropyl myristate). The more stable system was evaluated for mechanical and rheological properties, as well as, the in vitro drug release profile, permeation and cytotoxic potential to oral mucosa models. The flow-throw system evidenced that the formulations could keep 5 min over porcine oral mucosa. Emulgel showed pseudoplastic behavior and a gelation temperature of 33 °C, which ensure their higher consistency. In addition, 70% of the incorporated curcumin was released within 24 h in an in vitro drug release study and could permeate porcine oral mucosa. Monolayers cultures and tissue-engineered models showed the selectivity of the drug and systems for tumor cells. The physicochemical properties, subsequent release and permeation of curcumin to selectivity kill cancer cells could be improved by the incorporation into emulgel systems.


Assuntos
Carcinoma de Células Escamosas , Curcumina , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Mucosa Bucal , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Suínos
12.
J Med Food ; 23(5): 485-490, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31634026

RESUMO

The impact of oral supplementation with an effervescent glutamine formulation on the beneficial effects of antiretroviral therapies was evaluated in people living with HIV/AIDS. For this purpose, 12 HIV/AIDS carrier patients with CD4+ T cell counts <500, and who had received the same antiretroviral therapy for at least 1 year before starting this investigation were selected. The patients were required to dissolve the effervescent glutamine formulation (supplied in sachets) in water immediately before oral ingestion (12.4 g), once a day, after lunch or after dinner during 30 days. CD4+ T cell counts, complete blood cell counts, serum cytokines, and amino acids levels were quantified; biochemical and toxicological measurements were performed. The numbers of CD4+ T cells were increased (P < .05), and the serum C-reactive protein levels decreased (P < .01) after the administration of effervescent glutamine formulation. Serum levels of interferon-gamma inducible protein-10, RANTES, and macrophage inflammatory protein-1ß were decreased after the treatment with effervescent glutamine formulation. No changes were observed in the serum levels of amino acids, hematological, toxicological, and biochemical parameters. In conclusion, the treatment during 30 days with effervescent glutamine formulation was well tolerated, promoted reduction of inflammation, and improved the beneficial effects of antiretroviral therapies in HIV/AIDS carrier patients.


Assuntos
Suplementos Nutricionais , Glutamina/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Adulto , Aminoácidos/sangue , Fármacos Anti-HIV/uso terapêutico , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL4/sangue , Quimiocina CCL5/sangue , Quimiocina CXCL10/sangue , Humanos
14.
Nat Prod Res ; 33(8): 1196-1199, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29600721

RESUMO

Emodin reduction to emodin anthrone comprise one of three process steps involved in the hypericin synthesis, a powerful natural photosensitiser found in plants of the genus Hypericum. In this communication, an optimized protocol was established for emodin reduction enabling an efficient multigram preparation of emodin anthrone. A screening of reducing agent (SnCl2·2H2O and HClconc) under different reaction times was employed in micro-scale and monitored by electronic absorption spectroscopy technique. Data showed lower yields of emodin anthrone when some experimental conditions previously described in the literature were reproduce. However, using the optimized protocol for the emodin reduction these yields were overcoming, and a gram-scale supply experiment was reproducible for the preparation of 10 grams of emodin anthrone with excellent yield.


Assuntos
Emodina/análogos & derivados , Emodina/química , Hypericum/química , Perileno/análogos & derivados , Antracenos , Antraquinonas/química , Emodina/síntese química , Perileno/síntese química , Radiossensibilizantes/síntese química , Substâncias Redutoras
15.
Pharm Dev Technol ; 24(1): 12-23, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29172854

RESUMO

Catabolic conditions like acquired immunodeficiency syndrome, cancer, and burn can cause immunosuppression. Amino acids such as alanine and glutamine are essential for the activity of the immune system. Propolis is immunostimulant and the waste of propolis extraction has been reused with technological and therapeutic purposes. Therefore, this study describes the association of propolis byproduct extract (BPE) with pectin to prepare spray-dried microparticles containing the dipeptide l-alanyl-l-glutamine as stimulant systems of neutrophils. The use of a factorial design allowed selecting the best formulation, which was characterized by morphology, size, and entrapment efficiency analyses. In addition, the systems were characterized by thermal and X-ray diffraction analysis, Fourier-transform infrared spectroscopy, in vitro drug release, and in vitro cytotoxicity and stimulation test of neutrophils. Small well-structured microparticles with good entrapment efficiency values were achieved. Thermal stability of formulation was observed, and it was proved that pectin, BPE and l-alanyl-l-glutamine were dispersed throughout the matrix. The drug was released from the microparticles during 24 h governed by swelling and diffusion. The drug-loaded formulations showed a significant stimulating effect on neutrophils. These structures could increase the activity of immune cells, and other in vitro and in vivo studies should be performed in the future.


Assuntos
Dipeptídeos/administração & dosagem , Neutrófilos/efeitos dos fármacos , Pectinas/química , Própole/química , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/toxicidade , Química Farmacêutica/métodos , Dipeptídeos/farmacologia , Dipeptídeos/toxicidade , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Técnicas In Vitro , Microesferas , Neutrófilos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Difração de Raios X
16.
Pharm Dev Technol ; 23(4): 316-323, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28565928

RESUMO

The use of iron oxide magnetic nanoparticles (IMNP) in medical and pharmaceutical areas dates to the beginning of the 1970s, as carriers. Some other uses to these nanoparticles are in vitro separation, magnetic resonance imaging and drug targeting agent. Many preparations containing IMNP have been described and used in drug delivery, hyperthermia, in vitro separation, tissue repair, cellular therapy, for magnetic separation, magnetic resonance imaging, as spoilers for magnetic resonance spectroscopy, and more recently as sensors for metabolites and other biomolecules. The use of these nanostructures as antibacterial agents has also been reported, which could kill some bacteria species causing no damage to the human host cells. Recently, they have been used as hyperthermia agents to treat infections or cancer, which are more susceptible than the healthy host's cells. Engineering designs, physiochemical characteristics, biomedical applications of IMNP, toxicity and magnetic nanotoxicology have been discussed. However, the application of IMNP as antimicrobials is very important. Thus, this review explores the therapeutic activities of IMNP and their use as antimicrobial agents. These nanoparticles can be efficient for the treatment of microbial infections, probably acting as membrane permeability enhancer, damaging the cell wall or by generating reactive oxygen species.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Nanopartículas de Magnetita/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanomedicina/métodos , Nanotecnologia/métodos , Neoplasias/terapia
17.
J Pharm Sci ; 105(1): 113-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26852846

RESUMO

The aim of the present work was to develop a topical delivery system that contains Brazilian green propolis extract (PE-8) to increase efficiency and convenience when applied to herpetic lesions. The cytotoxicity and antiherpetic activity was determined in vitro and in vivo. The PE-8 was added to a system that contained poloxamer 407 and carbopol 934P. The in vitro characterization of the system included rheological studies, texture profile analysis, and mucoadhesion analysis. The PE-8 inhibited the virus during the phase of viral infection, induced virion damage, and exhibited an ability to protect cells from viral infection. The system had advantageous mucoadhesive properties, including a suitable gelation temperature of approximately 25°C for topical delivery, a desirable textural profile, and pseudoplastic behavior. The in vitro release study showed a rapid initial release of the PE-8 in the first 3 h, and the rate of drug release remained constant for up to 24 h. The system appeared to be macroscopically and microscopically innocuous to skin tissue. Therefore, the mucoadhesive thermoresponsive system that contained the PE-8 appears to be promising for increasing bioavailability and achieving prolonged release of the PE-8 when applied to skin lesions caused by herpes simplex virus type 1.


Assuntos
Antivirais/administração & dosagem , Portadores de Fármacos/química , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Própole/administração & dosagem , Acrilatos/química , Adesividade , Animais , Antivirais/química , Antivirais/uso terapêutico , Antivirais/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Feminino , Herpes Simples/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Mucosa Bucal/virologia , Poloxâmero/química , Própole/química , Própole/uso terapêutico , Própole/toxicidade , Reologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/virologia , Temperatura , Células Vero
18.
Pharm Dev Technol ; 21(8): 933-942, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26365036

RESUMO

Considering the antioxidant activity of the Trichilia catigua extract (TCE), the aim of the current study was to develop and characterize W/O/W multiple emulsions containing different vegetable oils as a platform to deliver a TCE. The extract displayed antioxidant activity (IC50) of 4.59 µg/mL and total phenol content (TPC) of 50.84%. Formulations were prepared by the phase-inversion emulsification method and analyzed for morphological appearance, pH, conductivity, droplet size and distribution, content of active, rheological properties, in vitro release, skin permeation, and stability. Formulations prepared with canola oil were selected and displayed regular morphology, mean diameter 2.77 µm (without TCE), 3.07 µm with 0.5% and 3.23 µm with 1.0% TCE. Rheometry (flow) showed pseudoplastic behavior with minimal thixotropy for both systems. TCE could be released from emulsions containing 1.0% and 0.5% TCE in a controlled manner for 16 and 23 h, respectively. The emulsions allowed good retention of TCE in the skin (stratum corneum, epidermis, and dermis). In a 180-d assessment of accelerated chemical stability, TPC was more reduced for the emulsions at 40 °C; other parameters remained stable. Multiple emulsions containing TCE were developed, exhibited good characteristics, and may be considered for future investigations as anti-aging formulations for the skin.


Assuntos
Preparações de Ação Retardada/química , Emulsões/química , Meliaceae/química , Animais , Antioxidantes/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Tamanho da Partícula , Permeabilidade , Óleos de Plantas/química , Óleo de Brassica napus , Reologia , Pele/metabolismo , Absorção Cutânea , Suínos , Água/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-25815029

RESUMO

Vulvovaginal candidiasis (VVC) is one of the most common genital infections in women. The therapeutic arsenal remains restricted, and some alternatives to VVC treatment are being studied. The present study evaluated the influence of a propolis extractive solution (PES) on biofilm production by Candida albicans isolated from patients with VVC. Susceptibility testing was used to verify the minimum inhibitory concentration (MIC) of PES, with fluconazole and nystatin as controls. The biofilm formation of 29 vaginal isolates of C. albicans and a reference strain that were exposed to PES was evaluated using crystal violet staining. Colony-forming units were evaluated, proteins and carbohydrates of the matrix biofilm were quantified, and scanning electron microscopy was performed. The MIC of PES ranged from 68.35 to 546.87 µg/mL of total phenol content in gallic acid. A concentration of 546.87 µg/mL was able to cause the death of 75.8% of the isolates. PES inhibited biofilm formation by C. albicans from VVC. Besides antifungal activity, PES appears to present important antibiofilm activity on abiotic surfaces, indicating that it may have an additional beneficial effect in the treatment of VVC.

20.
J Sep Sci ; 36(7): 1247-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23576366

RESUMO

The phenolic compounds are the main phytochemical constituents of the bark of Trichilia catigua and are commonly used for medicinal purposes. An HPLC method for the simultaneous quantification of phenolic compounds (procyanidin B2 (PB2), epicatechin (EPC), chinchonains Ia, Ib, IIa, IIb, catechin, and chrologenic acid) in T. catigua extract was developed and validated. A suitable chromatographic system was selected, which uses a gradient elution with methanol/ACN (75:25), and water both with 0.05% TFA, as mobile phase, column Luna, 280 nm, and flow 0.4 mL/min. Validation of the analytical method was based on the parameters: linearity, precision, LODs and LOQs, accuracy, robustness, and stability. The method showed linearity for PB2 and EPC, in the range 10-120 µg/mL with good correlation coefficients (>0.996). For precision, the repeatability ranged from 1.89 to 3.23%, and the values for accuracy for PB2 and EPC were 95 and 89%, respectively. The LODs and LOQs for PB2 were 1.36 and 4.12 µg/mL, and for EPC were 2.18 and 6.61 µg/mL, respectively. The method was robust under the conditions employed. The proposed method could be employed for quality assessment of T. catigua, as well as pharmaceutical products.


Assuntos
Cromatografia Líquida de Alta Pressão , Flavanonas/química , Meliaceae/química , Preparações de Plantas/química , Polifenóis/química , Biflavonoides/análise , Catequina/análise , Lasers Semicondutores , Limite de Detecção , Estrutura Molecular , Proantocianidinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA